Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T16:02:58.087Z Has data issue: false hasContentIssue false

Preparation and characterization of self-formed CoFe2O4 ferrofluid

Published online by Cambridge University Press:  03 March 2011

Jian Li*
Affiliation:
School of Physics, Southwest China University, Chongqing 400715, People’s Republic of China
Dalin Dai
Affiliation:
School of Life-Science, Southwest China University, Chongqing 400715, People’s Republic of China
Xiaodong Liu
Affiliation:
School of Physics, Southwest China University, Chongqing 400715, People’s Republic of China
Yueqiang Lin
Affiliation:
School of Physics, Southwest China University, Chongqing 400715, People’s Republic of China
Yan Huang
Affiliation:
School of Physics, Southwest China University, Chongqing 400715, People’s Republic of China
Lang Bai
Affiliation:
School of Physics, Southwest China University, Chongqing 400715, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: aizhong@swu.edu.cn
Get access

Abstract

An ionic ferrofluid is prepared using coprecipitation and acid treatment techniques. In the ferrofluid, Co3+ and Fe2+ dissolved from CoFe2O4 nanoparticles via suitable acid attack, are absorbed on the surface of the magnetic particles and thus prevent them from aggregating. We call this self-formed ferrofluid. The colloidal particles in the ferrofluid are constructed with a magnetic core and a nonmagnetic surface layer about 2 nm. The size and the volume fraction of particles in the ferrofluid are described with geometric diameter d and volume fraction ϕv, as well as magnetic diameter dm and magnetic volume fraction ϕm. The viscous and magnetic properties of this ferrofluid depend on these parameters. The viscosity can be tunable for any volume fraction of particles by adding poly(ethylene glycol) into the carrier liquid.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rosensweig, R.E.: Fluidmagnetic buoyancy. AIAAJ 4, 1751 (1966).Google Scholar
2Popplewell, J. and Charles, S.W.: Ferromagnetic liquid—Their magnetic properties. IEEE Trans. Mag. MAG-17, 2923 (1981).Google Scholar
3Sutariya, G.M., Upadhyay, R.V., and Mehta, R.V.: Preparation and properties of stable magnetic fluid using Mn substituted ferrite particles. J. Colloid. Inter. Sci. 155, 152 (1993).CrossRefGoogle Scholar
4Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Mag. MAG-17, 1247 (1981).Google Scholar
5Tourinho, F.A., Franck, R., and Massart, R.: Aqueous ferrofluids based on manganese and cobalt ferrites. J. Mater. Sci. 25, 3249 (1990).CrossRefGoogle Scholar
6Sousa, M.H., Tourinho, F.A., Depeyrot, J., Silva, G.J., and Lara, M.C.F.L.: New electric double-layered magnetic liquid based on copper, nickel, and zinc ferrite nanostructure. J. Phys. Chem. B 105, 1168 (2001).CrossRefGoogle Scholar
7Bacri, J.C., Perzynski, R., and Salin, D.: Ionic ferrofluids: A crossing of chemistry and physics. J. Magn. Magn. Mater. 85, 27 (1990).CrossRefGoogle Scholar
8Fauconnier, N., Pons, J.N., Roger, J., and Bee, A.: Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J. Colloid. Inter. Sci. 194, 427 (1997).Google Scholar
9Halbreich, A., Roger, J., Pons, J.N., Geldwerth, D., Silva, M.F. da, Roudier, M., and Bacri, J.C.: Biomedical applications of maghemite ferrofluid. Biochimie 80, 379 (1998).CrossRefGoogle ScholarPubMed
10Campos, A.F.C., Tourinho, F.A., Silva, G.J. da, Lara, M.C.F.L., and Depeyrot, J.: Nanoparticles superficial density of charge in electric double-layered magnetic fluid: A conductimetric and potentiometric approach. Eur. Phys. J. E. 6, 29 (2001).Google Scholar
11Li, J., Dai, D.L., Zhao, Z.G., Lin, Y.Q., and Lin, C.Y.: Properties of ferrofluid nanoparticles prepared by coprecipitation and acid treatment. J. Nanoparticle Res. 4, 261 (2002).Google Scholar
12Li, J. and Dai, D.L.: No. ZL021338647, Patent of PR China. ( 2005).Google Scholar
13Kodama, T., OoKubo, M., Miura, S., and Kitayama, Y.: Synthesis and characterization of ultrafine Mn(II)-bearing ferrite of type MnxFe3−xO4 by coprecipitation. Mater. Res. Bull. 31, 1501 (1996).Google Scholar
14Popplewell, J. and Sakhnini, L.: The dependence of the physical and magnetic properties of magnetic fluids on particles size. J. Magn. Magn. Mater. 149, 72 (1995).CrossRefGoogle Scholar
15Hasmonay, E., Deperyot, J., Sousa, M.H., Tourinho, F.A., Bacri, J-C., Perzynski, R., Raikher, L.Yu, and Rosenman, I.: Magnetic and optical properties of ionic ferrofluids based on nickel ferrite nanoparticles. J. Appl. Phys. 88, 6628 (2000).Google Scholar
16Jamon, D., Donatini, F., Monin, J., Rasa, M., Socoliuc, V., Filip, O., Bica, D., and Sofonea, V.: Concentration dependence of magnetisation and magneto-optical effects in a ferrofluid with double layer stabilized particles. J. Magn. Magn. Mater. 201, 174 (1999).CrossRefGoogle Scholar
17Berkowitz, A.E., Lahut, J.A., and VanBurn, C.E.: Properties of magnetic fluid particles. IEEE Trans. Mag. MAG-16, 184 (1980).Google Scholar
18Li, J., Liu, C.Y., Zhao, B.G., Lin, Y.Q., and Den, Z.J.: Structure and properties of Fe–C fine particles prepared by AC arc discharge. J. Magn. Magn. Mater. 195, 470 (1999).CrossRefGoogle Scholar
19Farris, R.J.: Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. Trans. Soc. Rheol. 12, 181 (1968).Google Scholar
20Dababnch, M.S., Ayoub, N.Y., Odeh, I., and Laham, N.M.: Viscosity, resistivity and surface tension measurement of Fe3O4 ferrofluid. J. Magn. Magn. Mater. 125, 34 (1993).CrossRefGoogle Scholar
21Choi, H.J., Kim, C.A., Kwon, T.M., and Jhon, M.S.: Viscosity of magnetic particle suspensions. J. Magn. Magn. Mater. 209, 228 (2000).Google Scholar
22Shaw, D.J.: Introduction to Colloid and Surface Chemistry, 4th ed, (Butterworth-Heinemann, Oxford, 1999), pp. 181, 217.Google Scholar
23Bizdoaca, E.L., Spasova, M., Farle, M., Hilgendorff, M., and Caruso, F.: Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell. J. Magn. Magn. Mater. 240, 44 (2002).CrossRefGoogle Scholar
24Li, J., Zhao, B.G., Lin, Y.Q., Qiu, X.Y., and Ma, X.J.: Transmission of light in ionic ferrofluid. J. Appl. Phys. 92, 1128 (2002).Google Scholar
25Li, J., Liu, X.D., Lin, Y.Q., Qiu, X.Y., Ma, X.J., and Hang, Y.: Field-induced transmission of light in ionic ferrofluid of tunable viscosity. J. Phys. D: Appl. Phys. 37, 3357 (2004).Google Scholar