Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:28:06.472Z Has data issue: false hasContentIssue false

Preliminary investigation on the catalytic mechanism of TiF3 additive in MgH2–TiF3 H-storage system

Published online by Cambridge University Press:  31 January 2011

Lai-Peng Ma
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Ping Wang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Xiang-Dong Kang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Hui-Ming Cheng
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: pingwang@imr.ac.cn
Get access

Abstract

A combined structure/property investigation is performed to understand the catalytic effect of TiF3 additive on the absorption/desorption reactions of MgH2. It was found that both TiH2 and MgF2 phases identified by x-ray diffraction cannot explain the observed kinetic enhancement in the MgH2–TiF3 system, whether they are incorporated in a direct or an in situ manner. In combination with the comparative investigation on the catalytic activity of TiF3 and its analog TiCl3, as well as the samples milled under inert and reactive atmospheres, we propose that the catalytically active species is a multicomponent metastable phase composed of host Mg, transition metal Ti, and F anion, the catalytic activity of which is dependent on its interaction with the surrounding chemical environment.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bowman, R.C. Fultz, B.: Metallic hydrides: I. Hydrogen storage and other gas-phase applications. MRS Bull. 27, 688 2002CrossRefGoogle Scholar
2Liang, G., Boily, S., Huot, J., Van Neste, A. Schulz, R.: Hydrogen absorption properties of a mechanically milled Mg-50wt%LaNi5 composite. J. Alloys Compd. 268, 302 1998CrossRefGoogle Scholar
3Wang, P., Wang, A.M., Zhang, H.F., Ding, B.Z. Hu, Z.Q.: Structural and hydriding properties of composite Mg-ZrFe1.4Cr0.6. Acta Mater. 49, 921 2001CrossRefGoogle Scholar
4Zaluska, A., Zaluski, L. Strm-Olsen, J.O.: Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288, 217 1999CrossRefGoogle Scholar
5Hanada, N., Ichikawa, T. Fujii, H.: Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J. Phys. Chem. B 109, 7188 2005CrossRefGoogle ScholarPubMed
6Checchetto, R., Bazzanella, N. Miotello, A.: Nb clusters formation in Nb-doped magnesium hydride. Appl. Phys. Lett. 87, 061904 2005CrossRefGoogle Scholar
7Wang, P., Wang, A.M., Zhang, H.F., Ding, B.Z. Hu, Z.Q.: Hydrogenation characteristics of Mg-TiO2 (rutile) composite. J. Alloys Compd. 313, 218 2000CrossRefGoogle Scholar
8Friedrichs, O., Aguey-Zinsou, F., Ares, J.R., Fernandez, , Sanchez-Lopez, J.C., Justo, A., Klassen, T., Bormann, R. Fernandez, A.: MgH2 with Nb2O5 as additive, for hydrogen storage: Chemical, structural and kinetic behavior with heating. Acta Mater. 54, 105 2006CrossRefGoogle Scholar
9Yavari, A.R., LeMoulec, A., de Castro, F.R., Deledda, S., Friedrichs, O., Botta, W.J., Vaughan, G., Klassen, T., Fernandez, A. Kvick, A.: Improvement in H-sorption kinetics of MgH2 powders by using Fe nanoparticles generated by reactive FeF3 addition. Scripta Mater. 52, 719 2005CrossRefGoogle Scholar
10Liang, G., Huot, J., Boily, S., Van Neste, A. Schulz, R.: Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 292, 247 1999CrossRefGoogle Scholar
11Liang, G., Huot, J., Boily, S., Van Neste, A. Schulz, R.: Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite. J. Alloys Compd. 291, 295 1999CrossRefGoogle Scholar
12Hanada, N., Ichikawa, T., Hino, S. Fujii, H.: Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5. J. Alloys Compd. 420, 46 2006CrossRefGoogle Scholar
13Wu, C.Z., Wang, P., Yao, X.D., Liu, C., Chen, D.M., Lu, G.Q. Cheng, H.M.: Effects of SWNT and metallic catalyst on hydrogen absorption/desorption performance of MgH2. J. Phys. Chem. B 109, 22217 2005CrossRefGoogle ScholarPubMed
14Ma, L.P., Wang, P. Cheng, H.M.: Improving hydrogen sorption kinetics of MgH2 by mechanical milling with TiF3. J. Alloys Compd. 432, L1 2007CrossRefGoogle Scholar
15Bogdanovic, B. Schwickardi, M.: Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen-storage materials. J. Alloys Compd. 1, 253 1997Google Scholar
16Wang, P. Jensen, C.M.: Method for preparing Ti-doped NaAlH4 using Ti powder: Observation of an unusual reversible dehydrogenation behavior. J. Alloys Compd. 379, 99 2004CrossRefGoogle Scholar
17Wang, P. Jensen, C.M.: Preparation of Ti-doped sodium aluminum hydride from mechanical milling of NaH/Al with off-the-shelf Ti powder. J. Phys. Chem. B 108, 15827 2004CrossRefGoogle Scholar
18Wang, P., Kang, X.D. Cheng, H.M.: Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. J. Phys. Chem. B 109, 20131 2005CrossRefGoogle ScholarPubMed
19Pelletier, J.F., Huot, J., Sutton, M., Schulz, R., Sandy, A.R., Lurio, L.B. Mochrie, S.G.J.: Hydrogen desorption mechanism in MgH2-Nb nanocomposites. Phys. Rev. B: Solid State 63, 052103 2001CrossRefGoogle Scholar
20Barkhordarian, G., Klassen, T. Bormann, R.: Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. J. Phys. Chem. B 110, 11020 2006CrossRefGoogle ScholarPubMed
21Isobe, S., Ichikawa, T., Hanada, N., Leng, H.Y., Fichtner, M., Fuhr, O. Fujii, H.: Effect of Ti catalyst with different chemical form on Li-N-H hydrogen storage properties. J. Alloys Compd. 404–406, 439 2005CrossRefGoogle Scholar
22Schimmel, H.G., Huot, J., Chapon, L.C., Tichelaar, F.D. Mulder, F.M.: Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium. J. Am. Chem. Soc. 127, 14384 2005CrossRefGoogle ScholarPubMed
23Zaluska, A. Zaluski, L.: New catalytic complexes for metal hydride systems. J. Alloys Compd. 404–406, 706 2005CrossRefGoogle Scholar
24Barin, I.: Thermochemical Data of Pure Substances, 3rd ed. Wiley-VCH Verlag GmbH, Weinheim, Germany 1995 1006–10081088CrossRefGoogle Scholar
25Patnak, P.: Handbook of Inorganic Chemicals McGraw-Hill, New York 2003 35Google Scholar
26Wang, P., Zhang, H.F., Ding, B.Z. Hu, Z.Q.: Direct hydrogenation of Mg and decomposition behavior of the hydride formed. J. Alloys Compd. 313, 209 2000CrossRefGoogle Scholar
27Wang, J., Ebner, A.D. Ritter, J.A.: Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4. J. Am. Chem. Soc. 128, 5949 2006CrossRefGoogle ScholarPubMed