Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T00:44:09.975Z Has data issue: false hasContentIssue false

Precipitate size refinement by CeO2 and Y2BaCuO5 additions in directionally solidified YBa2Cu3O7

Published online by Cambridge University Press:  31 January 2011

N. Vilalta
Affiliation:
Institut de Ciència de Materials de Barcelona, C.S.I.C., Campus de la UAB, 08193 Bellaterra, Spain
F. Sandiumenge
Affiliation:
Institut de Ciència de Materials de Barcelona, C.S.I.C., Campus de la UAB, 08193 Bellaterra, Spain
S. Piñol
Affiliation:
Institut de Ciència de Materials de Barcelona, C.S.I.C., Campus de la UAB, 08193 Bellaterra, Spain
X. Obradors
Affiliation:
Institut de Ciència de Materials de Barcelona, C.S.I.C., Campus de la UAB, 08193 Bellaterra, Spain
Get access

Abstract

Directional solidification of YBa2Cu3O7 has been carried out through a Bridgman technique, and the influence of Y2BaCuO5 and CeO2 additives on the size of Y2BaCuO5 precipitates has been investigated. It is demonstrated in this work that the most efficient procedure to reduce the size of the Y2BaCuO5 precipitates is to increase the concentration of nucleation centers present in the peritectic decomposition of YBa2Cu3O7−x. A small concentration (0.3−1 wt. %) of CeO2 has a strong influence on the solidification process and on the size of Y2BaCuO5 precipitates. It is shown that when CeO2 is added, further refinement of the size of precipitates results from the formation of nanometric Y2O3 particles which further enhance the multinucleation effect. We have also observed that coarsening effects are avoided with CeO2 additives.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kanube, S., and Kitazawa, K., Cryogenics 30, 390 (1990); M. Murakami, S. Gotoh, H. Fugimoto, K. Yamaguchi, K. Koshizuka, and S. Tanaka, Supercond. Sci. Technol. 4, 543 (1991).CrossRefGoogle Scholar
2.Gomis, V., Piñol, S., Martínez, B., Fontcuberta, J., and Obradors, X., in Applied Superconductivity, edited by Freyhardt, H. C. (DGM, Oberursel, 1993), Vol. 1, pp. 373376.Google Scholar
3.Martínez, B., Obradors, X., Gou, A., Gomis, V., Piñol, S., Fontcuberta, J., and van Tol, H., Phys. Rev. B 53, 2797 (1996).CrossRefGoogle Scholar
4.Murakami, M., in Melt Processed High-Temperature Superconductors, edited by Murakami, M. (World Scientific Ltd., Singapore, 1992), Chap. 3, pp. 2144.Google Scholar
5.Salama, K., Selvamanickam, V., and Lee, D. F., in Processing and Properties of High Tc Superconductors, edited by Jin, Sungho (World Scientific Ltd., Singapore, 1993), Vol. 1, Chap. 5, pp. 155211.CrossRefGoogle Scholar
6.McGuinn, P., in High Temperature Superconducting Materials Science and Engineering, edited by Shi, Donglu(Elsevier Science Ltd., 1995), Chap. 8, pp. 345382.CrossRefGoogle Scholar
7.Kim, C-J., Kim, K-B., Hong, G-W., Won, D-Y., Kim, B-H., Kim, C-T., Moon, H-C., and Suh, D-S., J. Mater. Res. 7, 2349 (1992).CrossRefGoogle Scholar
8.Kim, C-J., Kim, K-B., Won, D-Y., Moon, H-C., Suhr, D-S., Lai, S. H., and McGinn, P. J., J. Mater. Res. 9, 1952 (1994).CrossRefGoogle Scholar
9.Piñol, S., Sandiumenge, F., Martínez, B., Gomis, V., Fontcuberta, J., Obradors, X., Snoeck, E., and Roucau, Ch., Appl. Phys. Lett. 65, 1448 (1994).CrossRefGoogle Scholar
10.Piñol, S., Sandiumenge, F., Martínez, B., Vilalta, N., Granados, X., Gomis, V., Galante, F., Fontcuberta, J., and Obradors, X., IEEE Trans. Appl. Supercond. 5, 1549 (1995).CrossRefGoogle Scholar
11.Sandiumenge, F., Piñol, S., Obradors, X., Snoeck, E., and Roucau, Ch., Phys. Rev. B 50, 7032 (1994).CrossRefGoogle Scholar
12.Sandiumenge, F., Vilalta, N., Piñol, S., Martínez, B., and Obradors, X., Phys. Rev. B 51, 6645 (1995); B. Martínez, F. Sandiumenge, S. Piñol, N. Vilalta, J. Fontcuberta, and X. Obradors, Appl. Phys. Lett. 66, 772 (1995); B. Martínez, S. Piñol, V. Gomis, F. Sandiumenge, N. Vilalta, J. Fontcuberta, and X. Obradors, IEEE Trans. Appl. Supercond. 5, 1611 (1995).CrossRefGoogle Scholar
13.Piñol, S., Gomis, V., Martínez, B., Labarta, A., Fontcuberta, J., and Obradors, X., J. Alloys Compounds 195, 11 (1993).CrossRefGoogle Scholar
14. Seattle Speciality Ceramics, Inc. (Woodinville, WA).Google Scholar
15.Giorgio, A., Sanz, A., and Gual, J., (1992) IMAT, Serveis Científico T‘ecnics de la Universitat de Barcelona (unpublished).Google Scholar
16.Krabbes, G., Bieger, W., Wiesner, U., Ritsschel, R., and Teresiak, A., J. Solid State Chem. 103, 420 (1993).CrossRefGoogle Scholar
17.Krabbes, G., Schätzle, P., Wiesner, U., and Bieger, W., Physica C 235–240, 299 (1994).CrossRefGoogle Scholar
18.Griffith, M. L., Huffman, R. T., and Halloran, J. W., J. Mater. Res. 9, 1633 (1994).CrossRefGoogle Scholar
19.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 8, 1240 (1993).CrossRefGoogle Scholar
20. See Cima, M. J., Flemings, M. C., Figueredo, A. M., Nakade, M., Ishii, H., Brody, H., and Haggerty, J. S., J. Appl. Phys. 72, 179 (1992), and references therein.CrossRefGoogle Scholar