Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:33:33.062Z Has data issue: false hasContentIssue false

A poroelastic master curve for time-dependent and multiscale mechanics of hydrogels

Published online by Cambridge University Press:  12 November 2020

Mohammad R. Islam
Affiliation:
Department of Engineering, East Carolina University, E 5th St., Greenville, North Carolina27858, USA
Michelle L. Oyen*
Affiliation:
Department of Engineering, East Carolina University, E 5th St., Greenville, North Carolina27858, USA
*
a)Address all correspondence to this author. e-mail: oyenm18@ecu.edu
Get access

Abstract

Mechanical properties of hydrogels are of considerable interest for applications including tissue engineering and drug delivery. However, mechanical characterization of hydrogels is inherently challenging due to their multiphasic construction. Under mechanical loading, internal fluid redistribution affects the gel response, leading to a time- and length-scale-dependent material behavior, known as poroelasticity. Traditional mechanical tests are effective for determining instantaneous flow-independent gel response, and they are limited in characterizing poroelastic behavior as a function of loading time- and length-scales. Here, micro- and nanoindentation experiments are combined to characterize the full range of poroelastic behavior of a hydrogel. A master curve is presented to demonstrate that the relative competition of poroelastic relaxation time with ramp loading time determines gel response across different time- and length-scales. The master curve provides a novel mechanism to establish the instantaneous and equilibrium limits on the elastic modulus for a material, useful for designing hydrogel biomaterials.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hoare, T.R. and Kohane, D.S.: Hydrogels in drug delivery: Progress and challenges. Polymer 49, 1993 (2008).CrossRefGoogle Scholar
Baroli, B.: Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci. 96, 2197 (2007).CrossRefGoogle ScholarPubMed
Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677 (2006).CrossRefGoogle ScholarPubMed
Oyen, M.L.: Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59, 44 (2014).CrossRefGoogle Scholar
Oyen, M.L.: Nanoindentation of hydrated materials and tissues. Curr. Opin. Solid State Mater. Sci. 19, 317 (2015).CrossRefGoogle Scholar
Galli, M., Comley, K.S., Shean, T.A., and Oyen, M.L.: Viscoelastic and poroelastic mechanical characterization of hydrated gels. J. Mater. Res. 24, 973 (2009).CrossRefGoogle Scholar
Hu, Y., Zhao, X., Vlassak, J.J., and Suo, Z.: Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904 (2010).CrossRefGoogle Scholar
Zhao, X., Huebsch, N., Mooney, D.J., and Suo, Z.: Stress-relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys. 107, 063509 (2010).CrossRefGoogle ScholarPubMed
Strange, D.G., Fletcher, T.L., Tonsomboon, K., Brawn, H., Zhao, X., and Oyen, M.L.: Separating poroviscoelastic deformation mechanisms in hydrogels. Appl. Phys. Lett. 102, 031913 (2013).CrossRefGoogle Scholar
Wang, Q.-M., Mohan, A.C., Oyen, M.L., and Zhao, X.-H.: Separating viscoelasticity and poroelasticity of gels with different length and time scales. Acta Mech. Sin. 30, 20 (2014).CrossRefGoogle Scholar
Wahlquist, J.A., DelRio, F.W., Randolph, M.A., Aziz, A.H., Heveran, C.M., Bryant, S.J., Neu, C.P., and Ferguson, V.L.: Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage. Acta Biomater. 64, 41 (2017).CrossRefGoogle Scholar
Moeendarbary, E., Valon, L., Fritzsche, M., Harris, A.R., Moulding, D.A., Thrasher, A.J., Stride, E., Mahadevan, L., and Charras, G.T.: The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253 (2013).CrossRefGoogle ScholarPubMed
Oyen, M.L., Shean, T.A., Strange, D.G., and Galli, M.: Size effects in indentation of hydrated biological tissues. J. Mater. Res. 27, 245 (2012).CrossRefGoogle Scholar
Kalcioglu, Z.I., Mahmoodian, R., Hu, Y., Suo, Z., and Van Vliet, K.J.: From macro-to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter 8, 3393 (2012).CrossRefGoogle Scholar
Bush, B.G., Shapiro, J.M., DelRio, F.W., Cook, R.F., and Oyen, M.L.: Mechanical measurements of heterogeneity and length scale effects in PEG-based hydrogels. Soft Matter 11, 7191 (2015).CrossRefGoogle ScholarPubMed
Esteki, M.H., Alemrajabi, A.A., Hall, C.M., Sheridan, G.K., Azadi, M., and Moeendarbary, E.: A new framework for characterization of poroelastic materials using indentation. Acta Biomater. 102, 138 (2020).CrossRefGoogle ScholarPubMed
Chan, E.P., Hu, Y., Johnson, P.M., Suo, Z., and Stafford, C.M.: Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter 8, 1492 (2012).CrossRefGoogle Scholar
Lai, Y. and Hu, Y.: Probing the swelling-dependent mechanical and transport properties of polyacrylamide hydrogels through AFM-based dynamic nanoindentation. Soft Matter 14, 2619 (2018).CrossRefGoogle ScholarPubMed
Berry, J.D., Biviano, M., and Dagastine, R.R.: Poroelastic properties of hydrogel microparticles. Soft Matter 16, 5314 (2020).CrossRefGoogle ScholarPubMed
Strange, D.G.T. and Oyen, M.L.: Composite hydrogels for nucleus pulposus tissue engineering. J. Mech. Behav. Biomed. Mater. 11, 16 (2012).CrossRefGoogle ScholarPubMed
Shapiro, J.M. and Oyen, M.L.: Viscoelastic analysis of single-component and composite PEG and alginate hydrogels. Acta Mech. Sin. 30, 7 (2014).CrossRefGoogle Scholar
Holmes, D.L. and Stellwagen, N.C.: Estimation of polyacrylamide gel pore size from Ferguson plots of normal and anomalously migrating DNA fragments. I. Gels containing 3% N, N′-methylenebisacrylamide. Electrophoresis 12, 253 (1991).CrossRefGoogle ScholarPubMed
Gennes, P.G.: Scaling Concepts in Polymer Physics (Cornell University Press, New York, 1979).Google Scholar
Reiner, M.: The deborah number. Phys. Today 17, 62 (1964).CrossRefGoogle Scholar
Lakes, R.S.: Viscoelastic Materials (Cambridge University Press, Cambridge, UK, 2009).CrossRefGoogle Scholar
Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1987).Google Scholar
Agbezuge, L.K. and Deresiewicz, H.: On the indentation of a consolidating half-space. Israel J. Technol. 12, 322 (1974).Google Scholar
Hui, C.Y., Lin, Y.Y., Chuang, F.C., Shull, K.R., and Lin, W.C.: A contact mechanics method for characterizing the elastic properties and permeability of gels. J. Polym. Sci., B: Polym. Phys. 44, 359 (2006).CrossRefGoogle Scholar
Liu, M. and Huang, H.: Poroelastic response of spherical indentation into a half space with a drained surface via step displacement. Int. J. Solids Struct. 165, 34 (2019).CrossRefGoogle Scholar
Thurn, J., Morris, D.J., and Cook, R.F.: Depth-sensing indentation at macroscopic dimensions. J. Mater. Res. 17, 2679 (2002).CrossRefGoogle Scholar
Moghaddam, A.O., Wei, J., Kim, J., Dunn, A.C., and Johnson, A.J.W.: An indentation-based approach to determine the elastic constants of soft anisotropic tissues. J. Mech. Behav. Biomed. Mater. 103, 103539 (2020).CrossRefGoogle ScholarPubMed
Sun, J.-Y., Zhao, X., Illeperuma, W.R., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., and Suo, Z.: Highly stretchable and tough hydrogels. Nature 489, 133 (2012).CrossRefGoogle ScholarPubMed