Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:48:56.774Z Has data issue: false hasContentIssue false

Polytypoids in high Tc thallium based superconducting materials

Published online by Cambridge University Press:  31 January 2011

A. K. Singh
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
M. A. Imam
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
K. Sadananda
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
S. B. Qadri
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
E. F. Skelton
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
M. S. Osofsky
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
V. Le Tourneau
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
D. U. Gubser
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Several high Tc compounds containing Tl (thallium) were prepared starting from different initial compositions. Superconducting properties and the structure were determined for each sample. Electron diffraction and transmission electron microscopy showed the existence of polytypic high Tc compounds with the same a- and b-axes but different c-axis values. The c-axis appears to increase approximately in integral multiples of 0.15 nm with varying composition and is associated with the insertion of Cu–Ca or Cu–Tl layers in each unit cell. Several random stacking faults were also noted, which give rise to diffuse streaking in the electron diffraction pattern.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mitchel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B 68, 421423 (1987).CrossRefGoogle Scholar
2Maeda, M., Tanaka, Y., Fukutomi, M., and Asono, T., Jpn. J. Appl. Phys. Lett. 27, L209 (1988).CrossRefGoogle Scholar
3Hazen, R. M., Prewitt, C. T., Angel, R. J., Ross, N. L., Finger, L. W.,,Hadidiacos, G. G., Veblen, D. R., Heaney, P. J., Hor, P. H., Meng, R. L., Sun, Y. Y., Wang, Y. Q., Xue, Y. Y., Huang, Z. J., Guo, L., Bechtold, J., and Chu, C. W., Phys. Rev. Lett. 60, 1174 (1988).CrossRefGoogle Scholar
4Subramanian, M. A., Torardi, C. C., Calabrese, J. C., Gopalakrishnan, J., Morrissey, K. J., Askew, T. R., Flippen, R. B., Chowdhry, U., and Sleight, A. W., Science 239, 26 (1988).CrossRefGoogle Scholar
5Sheng, Z. Z. and Hermann, A. M., Nature 332, 138139 (1988).CrossRefGoogle Scholar
6Sheng, Z. Z. and Hermann, A. M., Nature 332, 5558 (1988).CrossRefGoogle Scholar
7Torardi, C. C., Subramanian, M. A., Calabrese, J. C., Gopalakrishnan, J., Morrissey, K. J., Askew, T. R., Flippen, R. B., Chowdhry, U., and Sleight, A. W., Science 240, 631633 (1988).CrossRefGoogle Scholar
8Hazen, R. M., Finger, L. W., Angel, R. J., Prewitt, C. T., Ross, N. L., Hadidiacos, G. G., Heaney, P. J., Veblen, D. R., Sheng, Z. Z., El Ali, A., and Hermann, A. M., Phys. Rev. Lett. 60, 16571659 (1988).CrossRefGoogle Scholar
9Subramanian, M. A., Calabrese, J. C., Torardi, C. C., Gopalakrishnan, J., Askew, T. R., Flippen, R. B., Morrissey, K. J., Chowdhry, U., and Sleight, A. W., Nature 332, 420422 (1988).CrossRefGoogle Scholar
10Parkin, S.S.P., Lee, V. Y., Nazzal, A. I., Savoy, R., Beyers, R., and La, S. J.Place, Phys. Rev. Lett. 61, 750753 (1988).CrossRefGoogle Scholar
11Kang, J. H., Kampwirth, R. T., and Gray, K. E., unpublished (1989).Google Scholar
12Ginley, D. S., Venturini, E. L., Kwak, J. F., Baughman, R. L., Carr, M. L., Hlava, P. F., Schirber, J. E., and Morosin, B., Physica C 152, 217223 (1988).CrossRefGoogle Scholar
13Morosin, B., Ginley, D. S., Venturini, E. L., Hlava, P. F., Baughman, R. J., Kwak, J. F., and Schirber, J. E., Physica C 152, 413423 (1988).CrossRefGoogle Scholar
14Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
15Cava, R. J., Batlogg, B., Van Dover, R. B., Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Reitmar, E. A., Zahurak, S., and Espinosa, G. P., Phys. Rev. Lett. 58, 1676 (1987).CrossRefGoogle Scholar
16Zandbergen, H. W., Huang, Y. K., Menken, M. J. V., Li, J. N., Kadowaki, K., Menovsky, A. A., van Tendeloo, G., and Amelinckx, A., Nature 332, 620623 (1988).CrossRefGoogle Scholar
17Trigunayat, G. C. and Verma, A. R., in Crystallography and Crystal Chemistry of Materials with Layered Structures, edited by Levy, F. (D. Reidel Publishing Co., Holland, 1976), pp. 269340.CrossRefGoogle Scholar
18Legendre, J. J., Moret, R., Tronc, E., E., and Huber, M., in Crystal Growth and Characterization of Polytype Structures, edited by Krishna, P. (Pergamon Press, Oxford, 1983), pp. 309340.Google Scholar
19Smith, J. V. and Yodef, H. S., Jr., Mineral. Mag. 31, 209214 (1956).Google Scholar
20van Tendeloo, G., Faber, K. T., and Thomas, G., J. Mater. Sci. 18, 525532 (1983).CrossRefGoogle Scholar
21van Tendeloo, G., Faber, K. T., and Thomas, G., J. Mater. Sci. 18, 525 (1983).CrossRefGoogle Scholar
22Jagodzinski, H., Acta Cryst. 7, 300310 (1954).CrossRefGoogle Scholar
23Hutchison, J. L. and Jacobson, A. J., Acta Cryst. B 31, 14421444 (1975).CrossRefGoogle Scholar
24Tilley, R. J. D., in Crystallography and Crystal Chemistry of Materials with Layered Structures, edited by Levy, F. (D. Reidel Publishing Company, Boston, MA, 1976), pp. 127184.CrossRefGoogle Scholar