Published online by Cambridge University Press: 27 February 2018
The increasing demand for portable and low-power electronics for applications in self-powered devices and sensors has spurred interest in the development of efficient piezoelectric materials, via which mechanical energy from ambient vibrations can be transformed into electrical energy for autonomous devices, or which can be used in strain-sensitive applications. Semiconducting piezoelectric materials are ideal candidates in the emerging field of piezotronics and piezophototronics, where the development of a piezopotential in response to stress/strain can be used to tune the band structure of the semiconductor and hence its electronic and/or optical properties. Furthermore, research into nanowires of these materials has intensified due to the enhancement of piezoelectric properties at the nanoscale. In this regard, nanowires of ZnO and the III-nitrides have been extensively studied, but the piezoelectric properties of non-nitride III–V semiconductor nanowires remain less-explored. Indeed, direct measurements of the piezoelectric properties of single III–V nanowires are tellingly rare due to the difficulties associated with measurements of piezoelectric properties of nanoscale objects using conventional scanning probe microscopy techniques. This review addresses the challenges related to the study of piezoelectricity in III–V nanowires and the opportunities that lie therein in terms of device applications.
Contributing Editor: Paul Muralt
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.