Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:31:56.927Z Has data issue: false hasContentIssue false

Piezoelectricity in non-nitride III–V nanowires: Challenges and opportunities

Published online by Cambridge University Press:  27 February 2018

Yonatan Calahorra
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
Sohini Kar-Narayan*
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
*
a)Address all correspondence to this author. e-mail: sk568@cam.ac.uk
Get access

Abstract

The increasing demand for portable and low-power electronics for applications in self-powered devices and sensors has spurred interest in the development of efficient piezoelectric materials, via which mechanical energy from ambient vibrations can be transformed into electrical energy for autonomous devices, or which can be used in strain-sensitive applications. Semiconducting piezoelectric materials are ideal candidates in the emerging field of piezotronics and piezophototronics, where the development of a piezopotential in response to stress/strain can be used to tune the band structure of the semiconductor and hence its electronic and/or optical properties. Furthermore, research into nanowires of these materials has intensified due to the enhancement of piezoelectric properties at the nanoscale. In this regard, nanowires of ZnO and the III-nitrides have been extensively studied, but the piezoelectric properties of non-nitride III–V semiconductor nanowires remain less-explored. Indeed, direct measurements of the piezoelectric properties of single III–V nanowires are tellingly rare due to the difficulties associated with measurements of piezoelectric properties of nanoscale objects using conventional scanning probe microscopy techniques. This review addresses the challenges related to the study of piezoelectricity in III–V nanowires and the opportunities that lie therein in terms of device applications.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Paul Muralt

References

REFERENCES

Calahorra, Y., Guan, X., Halder, N.N., Smith, M., Cohen, S., Ritter, D., Penuelas, J., and Kar-Narayan, S.: Exploring piezoelectric properties of III–V nanowires using piezo-response force microscopy. Semicond. Sci. Technol. 32, 074006 (2017).CrossRefGoogle Scholar
Zhao, M.H., Wang, Z.L., and Mao, S.X.: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587590 (2004).CrossRefGoogle Scholar
Wang, Z.L. and Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242246 (2006).CrossRefGoogle ScholarPubMed
Wang, X.D., Zhou, J., Song, J.H., Liu, J., Xu, N.S., and Wang, Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 27682772 (2006).CrossRefGoogle ScholarPubMed
Bernardini, F., Fiorentini, V., and Vanderbilt, D.: Spontaneous polarization and piezoelectric constants of III–V nitrides. Phys. Rev. B 56, 1002410027 (1997).CrossRefGoogle Scholar
Goniakowski, J., Finocchi, F., and Noguera, C.: Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 016501 (2008).CrossRefGoogle Scholar
Nam, C.Y., Jaroenapibal, P., Tham, D., Luzzi, D.E., Evoy, S., and Fischer, J.E.: Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett. 6, 153158 (2006).CrossRefGoogle ScholarPubMed
Minary-Jolandan, M., Bernal, R.A., Kujanishvili, I., Parpoil, V., and Espinosa, H.D.: Individual GaN nanowires exhibit strong piezoelectricity in 3D. Nano Lett. 12, 970976 (2012).CrossRefGoogle ScholarPubMed
Peng, M.Z., Li, Z., Liu, C.H., Zheng, Q., Shi, X.Q., Song, M., Zhang, Y., Du, S.Y., Zhai, J.Y., and Wang, Z.L.: High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 9, 31433150 (2015).CrossRefGoogle ScholarPubMed
Jamond, N., Chretien, P., Houze, F., Lu, L., Largeau, L., Maugain, O., Travers, L., Harmand, J.C., Glas, F., Lefeuvre, E., Tchernycheva, M., and Gogneau, N.: Piezo-generator integrating a vertical array of GaN nanowires. Nanotechnology 27, 325403 (2016).CrossRefGoogle ScholarPubMed
Wang, Z.L.: Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 5, 540552 (2010).CrossRefGoogle Scholar
Wang, Z.L.: Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 1, 13881393 (2010).CrossRefGoogle Scholar
Zhou, J., Gu, Y.D., Fei, P., Mai, W.J., Gao, Y.F., Yang, R.S., Bao, G., and Wang, Z.L.: Flexible piezotronic strain sensor. Nano Lett. 8, 30353040 (2008).CrossRefGoogle ScholarPubMed
Yang, X., Dong, L., Shan, C., Sun, J., Zhang, N., Wang, S., Jiang, M., Li, B., Xie, X., and Shen, D.: Piezophototronic-effect-enhanced electrically pumped lasing. Adv. Mater. 29, 1602832 (2017).CrossRefGoogle ScholarPubMed
Wen, X.N., Wu, W.Z., Pan, C.F., Hu, Y.F., Yang, Q., and Wang, Z.L.: Development and progress in piezotronics. Nano Energy 14, 276295 (2015).CrossRefGoogle Scholar
Dasgupta, N.P., Sun, J., Liu, C., Brittman, S., Andrews, S.C., Lim, J., Gao, H., Yan, R., and Yang, P.: 25th anniversary article: Semiconductor nanowires synthesis, characterization, and applications. Adv. Mater. 26, 21372184 (2014).CrossRefGoogle ScholarPubMed
Duan, X.F., Huang, Y., Cui, Y., Wang, J.F., and Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 6669 (2001).CrossRefGoogle ScholarPubMed
Krogstrup, P., Jorgensen, H.I., Heiss, M., Demichel, O., Holm, J.V., Aagesen, M., Nygard, J., and Morral, A.F.I.: Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photonics 7, 306310 (2013).CrossRefGoogle Scholar
Singh, J.: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, New York, 2003).CrossRefGoogle Scholar
Wood, C. and Jena, D.: Polarization Effects in Semiconductors from Ab Initio Theory to Device Applications (Springer Science + Business Media, LLC, Boston, MA, 2008). Available at: www.springer.com/gb/book/9780387368313. Google Scholar
Hayakawa, T., Kondo, M., Suyama, T., Takahashi, K., Yamamoto, S., and Hijikata, T.: Reduction in threshold current-density of quantum-well lasers grown by molecular-beam epitaxy on 0.5-degrees misoriented (111)B substrates. Jpn. J. Appl. Phys., Part 2 26, L302L305 (1987).CrossRefGoogle Scholar
Nedbal, J. and Klier, E.: Piezoelectric resonators of semiinsulating gaas. Phys. Status Solidi A 148, 329340 (1995).CrossRefGoogle Scholar
Klier, E. and Nedbal, J.: Piezoelectric resonators of inpfe. Czech J. Phys. 44, 575584 (1994).CrossRefGoogle Scholar
Hanada, T.: Basic properties of ZnO, GaN, and related materials. In Oxide and Nitride Semiconductors: Processing, Properties, and Applications, Vol. 12, Yao, T. and Hong, S-K., eds. (Springer, Berlin Heidelberg, 2009); pp. 119.CrossRefGoogle Scholar
Lawaetz, P.: Internal strain in zincblende and wurtzite crystals. Phys. Status Solidi B 57, 535544 (1973).CrossRefGoogle Scholar
Huang, M.C.Y., Cheng, K.B., Zhou, Y., Pesala, B., Chang-Hasnain, C.J., and Pisano, A.P.: Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL. IEEE Photonics Technol. Lett. 18, 11971199 (2006).CrossRefGoogle Scholar
Hjort, K., Soderkvist, J., and Schweitz, J.A.: Gallium-arsenide as a mechanical material. J. Micromech. Microeng. 4, 113 (1994).CrossRefGoogle Scholar
Hernandez, J.M., Izpura, I., Calleja, E., and Munoz, E.: Piezoelectric-induced current asymmetry in [111] InGaAs/InAlAs resonant-tunneling diodes for microwave mixing. Appl. Phys. Lett. 63, 773775 (1993).CrossRefGoogle Scholar
Campbell, I.H., Joswick, M.D., Smith, D.L., and Miles, R.H.: Observation of piezoelectric effects in strained resonant-tunneling structures grown on (111)B GaAs. Appl. Phys. Lett. 66, 988990 (1995).CrossRefGoogle Scholar
Kusaka, M.: Electrical-properties of metal piezo-electric semiconductor interface under stress. Surf. Sci. 78, 209219 (1978).CrossRefGoogle Scholar
Kusaka, M., Hiraoka, N., Hirai, M., and Okazaki, S.: Electrical-properties of p-type gap Schottky-barrier under stress. Surf. Sci. 91, 264270 (1980).CrossRefGoogle Scholar
Gerngross, M.D., Sprincean, V., Leisner, M., Carstensen, J., Foll, H., and Tiginyanu, I.: Porous InP as piezoelectric component in magnetoelectric composite sensors. ECS Trans. 35, 6772 (2011).Google Scholar
Cha, S., Kim, S.M., Kim, H., Ku, J., Sohn, J.I., Park, Y.J., Song, B.G., Jung, M.H., Lee, E.K., Choi, B.L., Park, J.J., Wang, Z.L., Kim, J.M., and Kim, K.: Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11, 51425147 (2011).CrossRefGoogle ScholarPubMed
Cutaia, D., Moselund, K.E., Schmid, H., Borg, M., Olziersky, A., Riel, H., and IEEE: Complementary III–V heterojunction lateral NW tunnel FET technology on Si. In 2016 IEEE Symposium on VlSI Technology (IEEE, 2016); pp. 12.Google Scholar
Gu, J.J., Koybasi, O., Wu, Y.Q., and Ye, P.D.: III–V-on-nothing metal-oxide-semiconductor field-effect transistors enabled by top-down nanowire release process: Experiment and simulation. Appl. Phys. Lett. 99, 112113 (2011).CrossRefGoogle Scholar
Fortuna, S.A. and Li, X.L.: Metal-catalyzed semiconductor nanowires: A review on the control of growth directions. Semicond. Sci. Technol. 25, 024005 (2010).CrossRefGoogle Scholar
Dick, K.A., Caroff, P., Bolinsson, J., Messing, M.E., Johansson, J., Deppert, K., Wallenberg, L.R., and Samuelson, L.: Control of III–V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol. 25, 024009 (2010).CrossRefGoogle Scholar
Dick, K.A. and Caroff, P.: Metal-seeded growth of III–V semiconductor nanowires: Towards gold-free synthesis. Nanoscale 6, 30063021 (2014).CrossRefGoogle ScholarPubMed
Noborisaka, J., Motohisa, J., and Fukui, T.: Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 86, 213102 (2005).CrossRefGoogle Scholar
Colombo, C., Spirkoska, D., Frimmer, M., Abstreiter, G., and Morral, A.F.I.: Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008).CrossRefGoogle Scholar
Dalacu, D., Kam, A., Austing, D.G., Wu, X.H., Lapointe, J., Aers, G.C., and Poole, P.J.: Selective-area vapour–liquid–solid growth of InP nanowires. Nanotechnology 20, 395602 (2009).CrossRefGoogle ScholarPubMed
Kelrich, A., Calahorra, Y., Greenberg, Y., Gavrilov, A., Cohen, S., and Ritter, D.: Shadowing and mask opening effects during selective-area vapor–liquid–solid growth of InP nanowires by metalorganic molecular beam epitaxy. Nanotechnology 24, 475302 (2013).CrossRefGoogle ScholarPubMed
Mohan, P., Motohisa, J., and Fukui, T.: Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core–shell nanowires. Appl. Phys. Lett. 88, 013110 (2006).CrossRefGoogle Scholar
Lehmann, S., Wallentin, J., Jacobsson, D., Deppert, K., and Dick, K.A.: A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires. Using only group V flow. Nano Lett. 13, 40994105 (2013).CrossRefGoogle Scholar
Kelrich, A., Sorias, O., Calahorra, Y., Kauffmann, Y., Gladstone, R., Cohen, S., Orenstein, M., and Ritter, D.: InP nanoflag growth from a nanowire template by in situ catalyst manipulation. Nano Lett. 16, 28372844 (2016).CrossRefGoogle ScholarPubMed
Calahorra, Y., Kelrich, A., Cohen, S., and Ritter, D.: Catalyst shape engineering for anisotropic cross-sectioned nanowire growth. Sci. Rep. 7, 40891 (2017).CrossRefGoogle ScholarPubMed
Joyce, H.J., Wong-Leung, J., Gao, Q., Tan, H.H., and Jagadish, C.: Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters. Nano Lett. 10, 908915 (2010).CrossRefGoogle ScholarPubMed
Kelrich, A., Dubrovskii, V.G., Calahorra, Y., Cohen, S., and Ritter, D.: Control of morphology and crystal purity of InP nanowires by variation of phosphine flux during selective area MOMBE. Nanotechnology 26, 085303 (2015).CrossRefGoogle ScholarPubMed
Spirkoska, D., Arbiol, J., Gustafsson, A., Conesa-Boj, S., Glas, F., Zardo, I., Heigoldt, M., Gass, M.H., Bleloch, A.L., Estrade, S., Kaniber, M., Rossler, J., Peiro, F., Morante, J.R., Abstreiter, G., Samuelson, L., and Morral, A.F.I.: Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 80, 245325 (2009).CrossRefGoogle Scholar
Moheimani, S.O.R., Fleming, A.J., and SpringerLink (Online service): Piezoelectric transducers for vibration control and damping. In Advances in Industrial Control (Springer-Verlag London Limited, London, 2006); pp. 935. Available at: www.springer.com/gb/book/9781846283314. Google Scholar
Boxberg, F., Sondergaard, N., and Xu, H.Q.: Elastic and piezoelectric properties of zincblende and wurtzite crystalline nanowire heterostructures. Adv. Mater. 24, 46924706 (2012).CrossRefGoogle ScholarPubMed
Mengistu, H.T. and Garcia-Cristobal, A.: The generalized plane piezoelectric problem: Theoretical formulation and application to heterostructure nanowires. Int. J. Solid Struct. 100, 257269 (2016).CrossRefGoogle Scholar
Park, S.H. and Chuang, S.L.: Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects. J. Appl. Phys. 87, 353364 (2000).CrossRefGoogle Scholar
Al-Zahrani, H.Y.S., Pal, J., Migliorato, M.A., Tse, G., and Yu, D.P.: Piezoelectric field enhancement in III–V core–shell nanowires. Nano Energy 14, 382391 (2015).CrossRefGoogle Scholar
Berlincourt, D., Shiozawa, L.R., and Jaffe, H.: Electroelastic properties of sulfides, selenides, and tellurides of zinc and cadmium. Phys. Rev. 129, 1009 (1963).CrossRefGoogle Scholar
Wang, S.Q. and Ye, H.Q.: First-principles study on elastic properties and phase stability of III–V compounds. Phys. Status Solidi B 240, 4554 (2003).CrossRefGoogle Scholar
Yan, R.X., Gargas, D., and Yang, P.D.: Nanowire photonics. Nat. Photonics 3, 569576 (2009).CrossRefGoogle Scholar
Calahorra, Y., Shtempluck, O., Kotchetkov, V., and Yaish, Y.E.: Young’s modulus, residual stress, and crystal orientation of doubly clamped silicon nanowire beams. Nano Lett. 15, 29452950 (2015).CrossRefGoogle ScholarPubMed
Heidelberg, A., Ngo, L.T., Wu, B., Phillips, M.A., Sharma, S., Kamins, T.I., Sader, J.E., and Boland, J.J.: A generalized description of the elastic properties of nanowires. Nano Lett. 6, 11011106 (2006).CrossRefGoogle ScholarPubMed
Dunaevskiy, M., Geydt, P., Lahderanta, E., Alekseev, P., Haggren, T., Kakko, J.P., Jiang, H., and Lipsanen, H.: Young’s modulus of wurtzite and zinc blende InP nanowires. Nano Lett. 17, 34413446 (2017).CrossRefGoogle ScholarPubMed
Alekseev, P.A., Dunaevskii, M.S., Stovpyaga, A.V., Lepsa, M., and Titkov, A.N.: Measurement of Young’s modulus of GaAs nanowires growing obliquely on a substrate. Semiconductors 46, 641646 (2012).CrossRefGoogle Scholar
Wang, Y.B., Wang, L.F., Joyce, H.J., Gao, Q.A., Liao, X.Z., Mai, Y.W., Tan, H.H., Zou, J., Ringer, S.P., Gao, H.J., and Jagadish, C.: Super deformability and Young’s modulus of GaAs nanowires. Adv. Mater. 23, 13561360 (2011).CrossRefGoogle ScholarPubMed
Chen, B., Gao, Q., Wang, Y., Liao, X., Mai, Y.W., Tan, H.H., Zou, J., Ringer, S.P., and Jagadish, C.: Anelastic behavior in GaAs semiconductor nanowires. Nano Lett. 13, 31693172 (2013).CrossRefGoogle ScholarPubMed
Chen, Y.J., Burgess, T., An, X.H., Mai, Y.W., Tan, H.H., Zou, J., Ringer, S.P., Jagadish, C., and Liao, X.Z.: Effect of a high density of stacking faults on the Young’s modulus of GaAs nanowires. Nano Lett. 16, 19111916 (2016).CrossRefGoogle ScholarPubMed
Mante, P.A., Lehmann, S., Anttu, N., Dick, K.A., and Yartsev, A.: Nondestructive complete mechanical characterization of zinc blende and wurtzite GaAs nanowires using time-resolved pump-probe spectroscopy. Nano Lett. 16, 47924798 (2016).CrossRefGoogle ScholarPubMed
Martin, R.M.: Relation between elastic tensors of wurtzite and zincblende structure materials. Phys. Rev. B 6, 45464553 (1972).CrossRefGoogle Scholar
Li, X., Wei, X.L., Xu, T.T., Ning, Z.Y., Shu, J.P., Wang, X.Y., Pan, D., Zhao, J.H., Yang, T., and Chen, Q.: Mechanical properties of individual InAs nanowires studied by tensile tests. Appl. Phys. Lett. 104, 103110 (2014).CrossRefGoogle Scholar
Erdelyi, R., Madsen, M.H., Safran, G., Hajnal, Z., Lukacs, I.E., Fulop, G., Csonka, S., Nygard, J., and Volk, J.: In situ mechanical characterization of wurtzite InAs nanowires. Solid State Commun. 152, 18291833 (2012).CrossRefGoogle Scholar
Niquet, Y.M. and Mojica, D.C.: Quantum dots and tunnel barriers in InAsOInP nanowire heterostructures: Electronic and optical properties. Phys. Rev. B 77, 115316 (2008).CrossRefGoogle Scholar
Faria, P.E. and Sipahi, G.M.: Band structure calculations of InP wurtzite/zinc-blende quantum wells. J. Appl. Phys. 112, 103716 (2012).CrossRefGoogle Scholar
Holm, M., Pistol, M.E., and Pryor, C.: Calculations of the electronic structure of strained InAs quantum dots in InP. J. Appl. Phys. 92, 932936 (2002).CrossRefGoogle Scholar
Bester, G. and Zunger, A.: Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 71, 045318 (2005).CrossRefGoogle Scholar
Hocevar, M., Giang, L.T.T., Songmuang, R., den Hertog, M., Besombes, L., Bleuse, J., Niquet, Y.M., and Pelekanos, N.T.: Residual strain and piezoelectric effects in passivated GaAs/AlGaAs core-shell nanowires. Appl. Phys. Lett. 102, 191103 (2013).CrossRefGoogle Scholar
Zervos, M. and Feiner, L.F.: Electronic structure of piezoelectric double-barrier InAs/InP/InAs/InP/InAs(111) nanowires. J. Appl. Phys. 95, 281291 (2004).CrossRefGoogle Scholar
Anufriev, R., Chauvin, N., Khmissi, H., Naji, K., Patriarche, G., Gendry, M., and Bru-Chevallier, C.: Piezoelectric effect in InAs/InP quantum rod nanowires grown on silicon substrate. Appl. Phys. Lett. 104, 183101 (2014).CrossRefGoogle Scholar
Moratis, K., Tan, S.L., Germanis, S., Katsidis, C., Androulidaki, M., Tsagaraki, K., Hatzopoulos, Z., Donatini, F., Cibert, J., Niquet, Y.M., Mariette, H., and Pelekanos, N.: Strained GaAs/InGaAs core–shell nanowires for photovoltaic applications. Nanoscale Res. Lett. 11, 17 (2016).CrossRefGoogle ScholarPubMed
Chen, I.J., Lehmann, S., Nilsson, M., Kivisaari, P., Linke, H., Dick, K.A., and Thelandert, C.: Conduction band offset and polarization effects in InAs nanowire polytype junctions. Nano Lett. 17, 902908 (2017).CrossRefGoogle ScholarPubMed
Chauvin, N., Mavel, A., Patriarche, G., Masenelli, B., Gendry, M., and Machon, D.: Pressure-dependent photoluminescence study of wurtzite InP nanowires. Nano Lett. 16, 29262930 (2016).CrossRefGoogle ScholarPubMed
Li, X., Wei, X.L., Xu, T.T., Pan, D., Zhao, J.H., and Chen, Q.: Remarkable and crystal-structure-dependent piezoelectric and piezoresistive effects of InAs nanowires. Adv. Mater. 27, 2852 (2015).CrossRefGoogle ScholarPubMed
Zheng, K., Zhang, Z., Hu, Y.B., Chen, P.P., Lu, W., Drennan, J., Han, X.D., and Zou, J.: Orientation dependence of electromechanical characteristics of defect-free InAs nanowires. Nano Lett. 16, 17871793 (2016).CrossRefGoogle ScholarPubMed
Lee, J.H., Pin, M.W., Choi, S.J., Jo, M.H., Shin, J.C., Hong, S.G., Lee, S.M., Cho, B., Ahn, S.J., Song, N.W., Yi, S.H., and Kim, Y.H.: Electromechanical properties and spontaneous response of the current in InAsP nanowires. Nano Lett. 16, 67386745 (2016).CrossRefGoogle ScholarPubMed
Signorello, G., Sant, S., Bologna, N., Schraff, M., Drechsler, U., Schmid, H., Wirths, S., Rossell, M.D., Schenk, A., and Riel, H.: Manipulating surface states of III–V nanowires with uniaxial stress. Nano Lett. 17, 28162824 (2017).CrossRefGoogle ScholarPubMed
Signorello, G., Lortscher, E., Khomyakov, P.A., Karg, S., Dheeraj, D.L., Gotsmann, B., Weman, H., and Riel, H.: Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat. Commun. 5, 3655 (2014).CrossRefGoogle ScholarPubMed
Signorello, G., Karg, S., Bjork, M.T., Gotsmann, B., and Riel, H.: Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett. 13, 917924 (2013).CrossRefGoogle ScholarPubMed
Soshnikov, I.P., Afanas’ev, D.E., Petrov, V.A., Cirlin, G.E., Bouravlev, A.D., Samsonenko, Y.B., Khrebtov, A., Tanklevskaya, E.M., and Seleznev, I.A.: Piezoelectric effect in GaAs nanowires. Semiconductors 45, 10821084 (2011).CrossRefGoogle Scholar
Lysak, V., Soshnikov, I.P., Lahderanta, E., and Cirlin, G.E.: Piezoelectric effect in GaAs nanowires: Experiment and theory. Phys. Status Solidi Rapid Res. Lett. 10, 172175 (2016).CrossRefGoogle Scholar
Lysak, V.V., Soshnikov, I.P., Lahderanta, E., and Cirlin, G.E.: Piezoelectric effect in wurtzite GaAs nanowires: Growth, characterization, and electromechanical 3D modeling. Phys. Status Solidi A 213, 30143019 (2016).CrossRefGoogle Scholar
Calahorra, Y., Smith, M., Datta, A., Benisty, H., and Kar-Narayan, S.: Mapping piezoelectric response in nanomaterials using a dedicated non destructive scanning probe technique. Nanoscale 9, 1929019297 (2017).CrossRefGoogle ScholarPubMed
Gruverman, A. and Kalinin, S.V.: Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J. Mater. Sci. 41, 107116 (2006).CrossRefGoogle Scholar
Tiwary, N., Sarkar, R., Rao, V.R., Laha, A., and IEEE: Piezoresponse force microscopy (PFM) characterization of GaN nanowires grown by plasma assisted molecular beam epitaxy (PA-MBE). In 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (Isaf/Ecapd/Pfm) (IEEE, 2016); pp. 14.Google Scholar
Agrawal, R. and Espinosa, H.D.: Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11, 786790 (2011).CrossRefGoogle ScholarPubMed
Hoang, M.T., Yvonnet, J., Mitrushchenkov, A., and Chambaud, G.: First-principles based multiscale model of piezoelectric nanowires with surface effects. J. Appl. Phys. 113, 014309 (2013).CrossRefGoogle Scholar
Guy, I.L., Muensit, S., and Goldys, E.M.: Extensional piezoelectric coefficients of gallium nitride and aluminum nitride. Appl. Phys. Lett. 75, 41334135 (1999).CrossRefGoogle Scholar
Wang, P.H., Du, H.J., Shen, S.N., Zhang, M.S., and Liu, B.: Preparation and characterization of ZnO microcantilever for nanoactuation. Nanoscale Res. Lett. 7, 15 (2012).CrossRefGoogle ScholarPubMed