Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:22:00.575Z Has data issue: false hasContentIssue false

Phase structure and thermal evolution in coating films and powders obtained by sol-gel process: Part II. ZrO2–2.5 mole% Y2O3

Published online by Cambridge University Press:  31 January 2011

R. Caruso
Affiliation:
Laboratorio de Materiales Cerámicos, FCEIyA, IFIR, Av. Pellegrini 250, 2000 Rosario, Argentina
E. Benavídez
Affiliation:
Laboratorio de Materiales Cerámicos, FCEIyA, IFIR, Av. Pellegrini 250, 2000 Rosario, Argentina
O. de Sanctis
Affiliation:
Laboratorio de Materiales Cerámicos, FCEIyA, IFIR, Av. Pellegrini 250, 2000 Rosario, Argentina
M. C. Caracoche
Affiliation:
Programa TENAES, Departamento de Física, FCE, Universidad Nacional de La Plata, c.c. 67, 1900 La Plata, Argentina
P. C. Rivas
Affiliation:
Programa TENAES, Departamento de Física, FCE, Universidad Nacional de La Plata, c.c. 67, 1900 La Plata, Argentina
M. Cervera
Affiliation:
Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, R.S. 184, 1864 Bernal, Argentina
A. Caneiro
Affiliation:
Centro Atómico Bariloche, CNEA, 8400 Bariloche, Argentina
A. Serquis
Affiliation:
Centro Atómico Bariloche, CNEA, 8400 Bariloche, Argentina
Get access

Abstract

Powders and coatings of zirconia doped with 2.5 mole% yttria have been produced via the sol-gel route. The phase structure and subsequent thermal evolution in heating and cooling cycles have been investigated using mainly perturbed angular correlations spectroscopy. Thermal analyses and XRD as a function of temperature have also been performed to obtain complementary information. Upon heating, the amorphous gels crystallized into the tetragonal structure and showed the same hyperfine pattern and thermal behavior as observed in tetragonal zirconia obtained by the ceramic route: the two configurations of vacancies around zirconium ions denoted as t1 and t2 forms and their mutual t1t2 transformation. While the powder sample exhibited an incipient thermal instability above 1000 °C and underwent completely the t2 form to m–ZrO2 transition during subsequent, gradual cooling below 500 °C, the coating retained the tetragonal phase within the whole temperature range investigated. Hyperfine results suggest that the tetragonal phase stabilization is favored by the highly defective nature of the t1 form and consequently hardened by the availability of oxygen. The PAC derived activation energy for the fast diffusion of the oxygen vacancies inherent to the t2 form was determined as 0.54 ± 0.14 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heuer, A. H., Chaim, R., and Lanteri, V., in Advances in Ceramics, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Westerville, OH, 1988), Vol. 24a, p. 3.Google Scholar
2.Schubert, H. and Petzow, G., in Advances in Ceramics, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Westerville, OH, 1988), Vol. 24a, p. 21.Google Scholar
3.Tsukuma, K., Ueda, K., Matsushita, K., and Shimada, M., J. Am. Ceram. Soc. 68 (2), C-56 (1985).Google Scholar
4.Stecura, S., Am. Ceram. Bull. 56 (12), 1082 (1977).Google Scholar
5.Yoldas, B. E., J. Mater. Sci, 21, 1080 (1986).CrossRefGoogle Scholar
6.Rivas, P. C., Martínez, J. A., Caracoche, M. C., García, A. R. López, Klein, L. C., and Pavlik, R. S. Jr, J. Am. Ceram. Soc. 78 (5), 1329 (1995).CrossRefGoogle Scholar
7.Caruso, R., Pellegri, N., de Sanctis, O., Caracoche, M. C., and Rivas, P. C., J. Sol-Gel Sci. Technol. 3, 241 (1994).CrossRefGoogle Scholar
8.Rivas, P. C., Caracoche, M. C., Martínez, J. A., Rodríguez, A. M., Caruso, R., Pellegri, N., and de Sanctis, O., J. Mater. Res. 12, 493 (1997).CrossRefGoogle Scholar
9.Jaeger, H., Ph.D. Thesis, Oregon State University, 1987.Google Scholar
10.Frauenfelder, H. and Steffen, R. M., in Alpha, Beta and Gamma Spectroscopies, edited by Siegbahn, K. (North-Holland, Amsterdam, The Netherlands, 1965), Chap. XIX.Google Scholar
11.Jaeger, H., Gardner, J. A., Haygarth, J. C., and Rasera, R. L., J. Am. Ceram. Soc. 69 (6), 458 (1986).CrossRefGoogle Scholar
12.Gardner, J. A., Jaeger, H., Su, H. T., Warner, W. H., and Haygarth, J. C., Physica B150, 223 (1988).Google Scholar
13.Rivas, P. C., Caracoche, M. C., Pasquevich, A. F., Martínez, J. A., Rodríguez, A. M., García, A. R. López, and Mintzer, S., J. Am. Ceram. Soc. 79 (4), 831 (1996).CrossRefGoogle Scholar
14.Marshall, A. J. and Meares, C. F., J. Chem. Phys. 56 (3), 1226 (1972).CrossRefGoogle Scholar
15.Caneiro, A., Baudaz, P., Fouletier, J., and Abriata, J. P., Rev. Sci. Instrum. 53, 1072 (1982).CrossRefGoogle Scholar
16.Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley, New York, 1974), Chap. 9.Google Scholar
17.Barrera-Solano, C., Solis, C. Jiménez, Rosa-Fox, N. dela, and Esquivias, L., J. Sol-Gel Sci. Technol. 2, 347 (1994).CrossRefGoogle Scholar
18.Colomban, Ph. and Bruneton, E., J. Non-Cryst. Solids 147 & 148, 201 (1992).CrossRefGoogle Scholar
19.Ruh, R., Mazdiyasni, R. S., Valentine, P., and Bielstein, H., J. Am. Ceram. Soc. 67, C-190 (1984).Google Scholar