Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T09:45:26.519Z Has data issue: false hasContentIssue false

Phase stability of heteroepitaxial polydomain BaTiO3 thin films

Published online by Cambridge University Press:  18 July 2011

A.L. Meier
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208
A.Y. Desai
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208; and Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
L. Wang
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, Evanston, Illinois 60208
T.J. Marks
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, Evanston, Illinois 60208
B.W. Wessels*
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208; and Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208
*
a) Address all correspondence to this author. e-mail: b-wessels@northwestern.edu
Get access

Abstract

The phase stability of ferroelectric, epitaxial, polydomain BaTiO3 thin films was examined using temperature-dependent x-ray diffraction (XRD) and in-plane electronic polarization measurements. The epitaxial BaTiO3 thin films were grown on MgO(100) substrates by a metal-organic chemical vapor deposition process. As-deposited and annealed BaTiO3 thin films with different domain structures were examined. Temperature-dependent plane-normal XRD analysis reveals well-defined phase transitions at 140 and 169 °C in the c- and a-oriented films, respectively. The measured Curie temperatures are consistent with those predicted by Landau-Ginsburg-Devonshire theory as applied to polydomain BaTiO3 thin films. Temperature-dependent in-plane electronic polarization measurements confirm that the 140 °C Curie temperature observed in the c-oriented film is a well-defined second-order paraelectric-ferroelectric transition.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tang, P.S., Meier, A.L., Towner, D.J., and Wessels, B.W.: BaTiO3 thin-film waveguide modulator with a low voltage-length product at near-infrared wavelengths of 0.98 and 1.55 μm. Opt. Lett. 30, 254 (2005).CrossRefGoogle Scholar
2Tang, P.S., Towner, D.J., Hamano, T., Meier, A.L., and Wessels, B.W.: Electro-optic modulation up to 40 GHz in a barium titanate thin film waveguide modulator. Opt. Express. 12, 5962 (2004).CrossRefGoogle Scholar
3Tang, P.S., Towner, D.J., Meier, A.L., and Wessels, B.W.: Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film. Appl. Phys. Lett. 85, 4615 (2004).CrossRefGoogle Scholar
4Tang, P.S., Towner, D.J., Meier, A.L., and Wessels, B.W.: Low-loss electrooptic BaTiO3 thin film waveguide modulator. IEEE Photonics Technol. Lett. 16, 1837 (2004).CrossRefGoogle Scholar
5Towner, D.J.: Investigation of torr electric domain structure and nonlinear optical properties in barium titanate epitaxial thin films. Ph.D. Thesis, Northwestern University, Chicago, IL 2005.Google Scholar
6Terauchi, H., Watanabe, Y., Kasatani, H., Kamigaki, K., Yano, Y., Terashima, T., and Bando, Y.: Structural study of epitaxial BaTiO3 crystals. J. Phys. Soc. Jpn. 61, 2194 (1992).CrossRefGoogle Scholar
7Iijima, K., Terashima, T., Yamamoto, K., Hirata, K., and Bando, Y.: Preparation of ferroelectric BaTiO3 thin-films by activated reactive evaporation. Appl. Phys. Lett. 56, 527 (1990).CrossRefGoogle Scholar
8Onodera, A., Kawamura, Y., Okabe, T., and Terauchi, H.: Specific heat in ferroelectric BaTiO3 epitaxial thin films. J. Eur. Ceram. Soc. 19, 1477 (1999).CrossRefGoogle Scholar
9Yoneda, Y., Okabe, T., Sakaue, K., Terauchi, H., Kasatani, H., and Deguchi, K.: Structural characterization of BaTiO3 thin films grown by molecular beam epitaxy. J. Appl. Phys. 83, 2458 (1998).CrossRefGoogle Scholar
10Bai, F.M., Zheng, H.M., Cao, H., Cross, L.E., Ramesh, R., Li, J.F., and Viehland, D.: Epitaxially induced high temperature (>900 K) cubic-tetragonal structural phase transition in BaTiO3 thin films. Appl. Phys. Lett. 85, 4109 (2004).CrossRefGoogle Scholar
11Kim, S.S. and Je, J.H.: Real-time synchrotron x-ray scattering study of an epitaxial BaTiO3 thin film during heating. J. Mater. Res. 14, 3734 (1999).CrossRefGoogle Scholar
12Marssi, M.E., Marrec, F.L., Lukyanchuk, I.A., and Karkut, M.G.: Ferroelectric phase in barium titanate epitaxial thin film. Ferroelectrics 291, 55 (2003).CrossRefGoogle Scholar
13Yoneda, Y., Kasatani, H., Terauchi, H., Yoshihiko, Y., Terashima, T., and Bando, Y.: Ferroelectric phase-transition in BaTiO3 films. J. Cryst. Growth 150, 1090 (1995).CrossRefGoogle Scholar
14Yoneda, Y., Sakaue, K., and Terauchi, H.: Phase transition of BaTiO3 thin films. J. Phys. Condens. Matter 13, 9575 (2001).CrossRefGoogle Scholar
15Hoerman, B.H., Ford, G.M., Kaufmann, L.D., and Wessels, B.W.: Dielectric properties of epitaxial BaTiO3 thin films. Appl. Phys. Lett. 73, 2248 (1998).CrossRefGoogle Scholar
16Chattopadhyay, S., Teren, A.R., Hwang, J.H., Mason, T.O., and Wessels, B.W.: Diffuse phase transition in epitaxial BaTiO3 thin films. J. Mater. Res. 17, 669 (2002).CrossRefGoogle Scholar
17Choi, K.J., Biegalski, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L.Q., Schlom, D.G., and Eom, C.B.: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 (2004).CrossRefGoogle ScholarPubMed
18Lines, M.E. and Glass, A.M.: Principles and Applications of Ferroelectric and Related Materials (Oxford University Press, Oxford, 2001), p. 680.CrossRefGoogle Scholar
19Pertsev, N.A., Koukhar, V.G., Waser, R., and Hoffmann, S.: Effects of domain formation on the dielectric properties of ferroelectric thin films. Integr. Ferroelectr. 32, 927 (2001).CrossRefGoogle Scholar
20Alpay, S.P., Misirlioglu, I.B., Sharma, A., and Ban, Z.G.: Structural characteristics of ferroelectric phase transformations in single-domain epitaxial films. J. Appl. Phys. 95, 8118 (2004).CrossRefGoogle Scholar
21Li, Y.L., Hu, S.Y., Liu, Z.K., and Chen, L.Q.: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395 (2002).CrossRefGoogle Scholar
22Pirc, R. and Blinc, R.: Off-center Ti model of barium titanate. Phys. Rev. B 70, 134107 (2004).CrossRefGoogle Scholar
23Koukhar, V.G., Pertsev, N.A., and Waser, R.: Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures. Phys. Rev. B 6421, 214103 (2001).CrossRefGoogle Scholar
24Rabe, K.M. and Waghmare, U.V.: Strain coupling in perovskite structural transitions: A first principles approach. Ferroelectrics 194, 119 (1997).CrossRefGoogle Scholar
25Fujimoto, M.: The Physics of Structural Phase Transitions 2nd ed. (Springer, New York, 2005), p. 277.Google Scholar
26Pertsev, N.A., Zembilgotov, Z.G., and Tagantsev, A.K.: Equilibrium states and phase transitions in epitaxial ferroelectric thin films. Ferroelectrics 223, 79 (1999).CrossRefGoogle Scholar
27Towner, D.J., Ni, J., Marks, T.J., and Wessels, B.W.: Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films. J. Cryst. Growth 255, 107 (2003).CrossRefGoogle Scholar
28Belot, J.A., Neumayer, D.A., Reedy, C.J., Studebaker, D.B., Hinds, B.J., Stern, C.L., and Marks, T.J.: Volatility by design. Synthesis and characterization of polyether adducts of bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)barium and their implementation as metal-organic chemical vapor deposition precursors. Chem. Mater. 9, 1638 (1997).CrossRefGoogle Scholar
29Gevorgian, S., Berg, H., Jacobsson, H., and Lewin, T.: Basic parameters of coplanar-strip waveguides on multilayer dielectric/semiconductor substrates. Part 1: High permittivity substrates. IEEE Microw. Mag. 4, 60 (2003).CrossRefGoogle Scholar
30Hoerman, B.H.: Investigation of the electro-optic and dielectric properties of epitaxial ferroelectric thin films. Ph.D. Thesis, Northwestern University, Chicago, IL, 2001.CrossRefGoogle Scholar
31Li, Y.L. and Chen, L.Q.: Temperature-strain phase diagram for BaTiO3 thin films. Appl. Phys. Lett. 88, 072905 (2006).CrossRefGoogle Scholar
32Alpay, S.P. and Roytburd, A.L.: Thermodynamics of polydomain heterostructures. III. Domain stability map. J. Appl. Phys. 83, 4714 (1998).CrossRefGoogle Scholar
33Speck, J.S. and Pompe, W.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. 1. Theory. J. Appl. Phys. 76, 466 (1994).CrossRefGoogle Scholar
34Sharma, H.B. and Mansingh, A.: Phase transition in sol-gel-derived barium titanate thin films. J. Phys. D Appl. Phys. 31, 1527 (1998).CrossRefGoogle Scholar
35Taylor, D.: Thermal expansion data. 8. Complex oxides, ABO3, the perovskites. Trans. J. Br. Ceram. Soc. 84, 181 (1985).Google Scholar
36Kelly, A., Groves, G.W., and Kidd, P.: Crystallography and Crystal Defects (Wiley, Chichester, 2000), p. 470.Google Scholar
37Bridge, B.: Anomalies arising from a comparison of the elastic-constants of the high-temperature superconductor YBa2Cu3O7-X and the related perovskite structure BaTiO3. J. Mater. Sci. Lett. 8, 695 (1989).CrossRefGoogle Scholar
38Hu, S.Y., Li, Y.L., and Chen, L.Q.: Effect of interfacial dislocations on ferroelectric phase stability and domain morphology in a thin film: A phase-field model. J. Appl. Phys. 94, 2542 (2003).CrossRefGoogle Scholar