Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T00:17:19.090Z Has data issue: false hasContentIssue false

Phase selection in a mechanically alloyed Cu2013;In–Ga–Se powder mixture

Published online by Cambridge University Press:  31 January 2011

C. Suryanarayana
Affiliation:
Advanced Coatings and Surface Engineering Laboratory (ACSEL), Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401-1887
E. Ivanov
Affiliation:
Tosoh SMD, Inc., Grove City, Ohio 43213-1895
R. Noufi
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401-3393
M. A. Contreras
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401-3393
J.J. Moore
Affiliation:
Advanced Coatings and Surface Engineering Laboratory (ACSEL), Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401-1887
Get access

Abstract

Formation of a homogeneous nanocrystalline CuIn0.7Ga0.3Se2 alloy was achieved by mechanical alloying of blended elemental Cu, In, Ga, and Se powders in a planetary ball mill. X-ray diffraction and transmission electron microscopy and diffraction techniques were employed to follow the structural evolution during milling. It was observed that, depending upon the milling conditions, either a metastable cubic or a stable tetragonal phase was produced. The grain size of the mechanically alloyed powder was about 10 nm. The mechanically alloyed powder was consolidated to full density by hot isostatic pressing the powder at 750 °C and 100 MPa for 2 h. Irrespective of the nature of the phase in the starting powder, the hot isostatically pressed compact contained the well-recrystallized tetragonal CuIn0.7Ga0.3Se2 phase with a grain size of about 50 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tuttle, J. R., Contreras, M. A., Gillespie, T. J., Ramanathan, K. R., Tennant, A. L., Keane, J., Gabor, A. M., and Noufi, R., Prog. Photovoltaics 3, 235 (1995).Google Scholar
2.Birkmire, R. W. and Eser, E., Annu. Rev. Mater. Sci. 27, 625 (1997).CrossRefGoogle Scholar
3.Dimmler, B., Dittrich, H., Menner, R., and Schock, H. W., Proceedings of the 19th IEEE Photovoltaics Specialty Conference, New York (1988), p. 1454.Google Scholar
4.Contreras, M. A., Wiessner, H., Niles, D., Ramanathan, K., Matson, R., Tuttle, J., Keane, J., and Noufi, R., Proceedings of the 25th IEEE Photovoltaics Specialty Conference, Washington D.C. (1996), p. 809.Google Scholar
5.Suryanarayana, C., Metals and Materials 2, 195 (1996).Google Scholar
6.Suryanarayana, C., in ASM Handbook, Vol. 7 (Powder Metal Technologies and Applications) (ASM INTERNATIONAL, Materials Park, OH, 1998).Google Scholar
7.Suryanarayana, C., A Bibliography on Mechanical Alloying and Milling, (Cambridge International Scientific Publ., Cambridge, UK, 1995).Google Scholar
8.Klug, H.P. and Alexander, L., X-Ray Diffraction Procedures, 2nd ed. (John Wiley & Sons, Inc., New York, 1974).Google Scholar
9.Suryanarayana, C. and Norton, M.G., X-Ray Diffraction: A Practical Approach (Plenum Publishing Corp., New York, 1998).CrossRefGoogle Scholar
10.Grzeta-Plenkovic, B., Popovic, S., Celustka, B., and Santic, B., J. Appl. Crystallogr. 13, 311 (1980).CrossRefGoogle Scholar
11.Suri, D., Nagpal, K., and Chadha, G. J., J. Appl. Crystallogr. 22, 578 (1989).Google Scholar
12.Fearheiley, M.L., Solar Cells 16, 91 (1986).Google Scholar
13.Range, K-J., Engels, J., and Weiss, A., Z. Naturforsch. 23, 1262 (1968).CrossRefGoogle Scholar
14.Ohtani, T., Motoki, M., Koh, K., and Ohshima, K., Mater. Res. Bull. 30, 1495 (1995).CrossRefGoogle Scholar
15.Han, S.H., Gschneider, K.A. Jr, and Beaudry, B.J., Scripta Metall. Mater. 25, 295 (1991).CrossRefGoogle Scholar
16.Alonso, T., Liu, Y., Dallimore, M. P., and McCormick, P.G., Scripta Metall. Mater. 29, 55 (1993).CrossRefGoogle Scholar
17.Bakker, H., Zhou, G. F., and Yang, H., Prog. Mater. Sci. 39, 159 (1995).Google Scholar
18.Gerasimov, K.B., Guzev, A. A., Ivanov, E. Y., and Boldyrev, V. V., J. Mater. Sci. 26, 2495 (1991).Google Scholar
19.Guo, W., Iasonna, A., Magini, M., Martelli, S., and Padella, F., J. Mater. Sci. 29, 2436 (1994).CrossRefGoogle Scholar
20.Liu, L., Casadio, S., Magini, M., Nannetti, C. A., Qin, Y., and Zheng, K., Mater. Sci. Forum 235–238, 163 (1997).Google Scholar
21.Ohtani, T., Maruyama, K., and Ohshima, K., Mater. Res. Bull. 32, 343 (1997).CrossRefGoogle Scholar