Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T00:49:18.321Z Has data issue: false hasContentIssue false

Phase and microstructural evolution in polymer-derived composite systems and coatings

Published online by Cambridge University Press:  31 January 2011

Jessica D. Torrey
Affiliation:
University of Washington, Department of Materials Science and Engineering, Seattle, Washington 98195
Rajendra K. Bordia*
Affiliation:
University of Washington, Department of Materials Science and Engineering, Seattle, Washington 98195
*
a)Address all correspondence to this author. e-mail: bordia@u.washington.edu
Get access

Abstract

Polymer-derived ceramics have shown promise as a novel way to process low-dimensional ceramics such as environmental barrier coatings. Composite coatings have been developed as oxidation and carburization barriers on steel using poly(hydridomethylsiloxane) matrix and titanium disilicide as reactive fillers. A systematic study of the phase transformations and microstructural changes in the coatings and their components during pyrolysis in air is presented here. The system evolves from an amorphous polymer filled with a binary metal at room temperature to an inorganic amorphous network of oxidized silicon and titanium at the target temperature of 800 °C. Crystallization of the composite occurs at higher temperatures to reach cristobalite and rutile by 1600 °C. The polymer-to-ceramic conversion occurs between 200 and 600 °C. The oxidation of the expansion agent and the densification of the composite take place between 300 and 800 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Greil, P.: Near-net-shape manufacturing of polymer derived ceramics. J. Eur. Ceram. Soc. 18, 1905 1998CrossRefGoogle Scholar
2Bill, J. Heimann, D.: Polymer-derived ceramic coatings on C/C-SiC composites. J. Eur. Ceram. Soc. 16, 1115 1996CrossRefGoogle Scholar
3Abe, Y., Kagayama, K., Takamura, N., Gunji, T., Yoshihara, T. Takahashi, N.: Preparation and properties of polysilsesquioxanes: Function and characterization of coating agents and films. J. Non-Cryst. Solids 261, 39 2000CrossRefGoogle Scholar
4Blum, Y.D. Macqueen, B.: Modifications of hydrosiloxane polymers for coatings applications. Surf. Coat. Int. Part B: Coat. Trans. 84(B1), 27 2001CrossRefGoogle Scholar
5Colombo, P., Paulson, T. Pantano, C.: Synthesis of silicon carbide thin films with polycarbosilane (PCS). J. Am. Ceram. Soc. 80(9), 2333 1997CrossRefGoogle Scholar
6Colombo, P., Riccardi, B., Donato, A. Scarinci, G.: Joining of SiC/SiC ceramic-matrix composites for fusion reactor blanket applications. J. Nucl. Mater. 278, 127 2000CrossRefGoogle Scholar
7Lewinsohn, C.A., Jones, R.H., Colombo, P. Riccardi, B.: Silicon carbide-based materials for joining silicon carbide composites for fusion energy applications. J. Nucl. Mater. 307–311, 1232 2002CrossRefGoogle Scholar
8Stackpoole, M.: Reactive processing and mechanical properties of silicon nitride matrix composites and their use in joining ceramic-matrix composites. Ph.D. Thesis, University of Washington, Seattle, WA, 2002Google Scholar
9Yajima, S.: Development of high tensile strength SiC fiber using an organosilicon polymer precursor. Nature 273, 525 1978CrossRefGoogle Scholar
10Riedel, R., Seher, M., Mayer, J. Szabo, D.V.: Polymer-derived Si-based bulk ceramics: I. Preparation, processing and properties. J. Eur. Ceram. Soc. 15(8), 703 1995CrossRefGoogle Scholar
11Riedel, R. Dressler, W.: Chemical formation of ceramics. Ceram. Int. 22(3), 233 1996CrossRefGoogle Scholar
12Soraru, G.D., Pederiva, L., Latournerie, J. Raj, R.: Pyrolysis kinetics for the conversion of a polymer into an amorphous silicon oxycarbide ceramic. J. Am. Ceram. Soc. 85(9), 2181 2002Google Scholar
13Corriu, R.J.P.: Ceramics and nanostructures from molecular precursors. Angew. Chem. 39(8), 1376 20003.0.CO;2-S>CrossRefGoogle Scholar
14Greil, P.: Active-filler-controlled pyrolysis of preceramic polymers. J. Am. Ceram. Soc. 78(4), 835 1995CrossRefGoogle Scholar
15Pantano, C., Singh, A. Zhang, H.: Silicon oxycarbide glasses. J. Sol.-Gel. Sci. Technol. 14, 7 1999CrossRefGoogle Scholar
16Erny, T., Seibold, M., Jarchow, O. Greil, P.: Microstructure development of oxycarbide composites during active-filler-controlled polymer pyrolysis. J. Am. Ceram. Soc. 76(1), 207 1993CrossRefGoogle Scholar
17Liew, L-A., Saravanan, R.A., Bright, V.M., Dunn, M.L., Daily, J.W. Raj, R.: Processing and characterization of silicon carbon-nitride ceramics: Application of electrical properties towards MEMS thermal actuators. Sens. Actuators, A 103, 171 2003CrossRefGoogle Scholar
18Akkas, H.D., Ovecoglu, M.L. Tanoglu, M.: Development of Si-O-C based ceramic-matrix composites produced via pyrolysis of a polysiloxane. Key Eng. Mater. 264–268, 961 2004CrossRefGoogle Scholar
19Zeschky, J., Goetz-Neunhoeffer, F., Neubauer, J., Lo, S.H.J., Kummer, B., Scheffler, M. Greil, P.: Preceramic polymer derived cellular ceramics. Compos. Sci. Technol. 63, 2361 2003Google Scholar
20Colombo, P. Bernardo, E.: Macro- and micro-cellular porous ceramics from preceramic polymers. Compos. Sci. Tech. 63, 2353 2003CrossRefGoogle Scholar
21Blum, Y.D., Johnson, S.M. Gusman, M.I.: Hydridosiloxanes as precursors to ceramic products, U.S. Patent 5 635 250, June 3, 1997Google Scholar
22Torrey, J.D., Bordia, R.K., Henager, C.H. Jr., Blum, Y., Shin, Y. Samuels, W.D.: Composite polymer derived ceramic system for oxidizing environments. J. Mater. Sci. 41, 4617 2006Google Scholar
23Torrey, J.D. Bordia, R.K.: Polymer derived ceramic composite coatings: Processing and characterization of coatings on steel 2006 (submitted for publication)Google Scholar
24ASTM Test Method E1641. Standard test method for decomposition kinetics by thermogravimetry, in ASTM Book of Standards ASTM International, Conshohocken, PA 1994 14.02, 1042Google Scholar
25Flynn, J.H. Wall, L.A.: A quick, direct method for the determination of activation energy from thermogravimetric data. Polym. Lett. 4, 323 1966CrossRefGoogle Scholar
26Levin, E.M., Robbins, C.R. McMurdie, H.F.: Phase Diagrams for Ceramists The American Ceramic Society, Columbus, OH 1964 69Google Scholar
27Seibold, M. Greil, P.: Thermodynamics and microstructural development of ceramic composite formation by active filler-controlled pyrolysis (AFCOP). J. Eur. Ceram. Soc. 11, (2)105 1993CrossRefGoogle Scholar
28Yu, S.H., Riman, R.E., Danforth, S.C. Leung, R.Y.: Pyrolysis of titanium-metal-filled poly(siloxane) preceramic polymer: Effect of atmosphere on pyrolysis product chemistry. J. Am. Ceram. Soc. 78(7), 1818 1995CrossRefGoogle Scholar
29Liu, W-C., Yang, C-C., Chen, W-C., Dai, B-T. Tsai, M-S.: The structural transformation and properties of spin-on poly(silsesquioxane) films by thermal curing. J. Non-Cryst. Solids 311(3), 233 2002CrossRefGoogle Scholar
30Lide, D.R.: Handbook of Chemistry and Physics CRC Press Inc, Boca Raton, FL 1996 9Google Scholar
31Shi, L.T. Tu, K.N.: Thermogravimetric study of the recovery of oxygen-deficient superconducting YBa2Cu3O7-δ oxides in ambient oxygen. Appl. Phys. Lett. 55, 1351 1989CrossRefGoogle Scholar
32Schwettmann, F.N., Graff, R.A. Kolodney, M.: Mechanism of the oxidation of titanium disilicide. J. Electrochem. Soc. 118(12), 1973 1971CrossRefGoogle Scholar
33D’heurle, F., E.A., , Irene, Ting, C.Y.: Oxidation of silicide thin films: TiSi2. Appl. Phys. Lett. 42(4), 361 1983CrossRefGoogle Scholar