Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:41:41.886Z Has data issue: false hasContentIssue false

Oxygen incorporation in aluminum nitride via extended defects: Part II. Structure of curved inversion domain boundaries and defect formation

Published online by Cambridge University Press:  03 March 2011

Alistair D. Westwood
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Robert A. Youngman
Affiliation:
Carborundum Microelectronics Company, 10409 S. 50th Place, Phoenix, Arizona 85044
Martha R. McCartney
Affiliation:
Center for Solid State Science, Arizona State University. Tempe, Arizona 85287
Alastair N. Cormack
Affiliation:
New York State College of Ceramics. Alfred University, Alfred. New York 14802
Michael R. Notis
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Get access

Abstract

Three distinct morphologies of curved (curved, facetted, and corrugated) inversion domain boundaries (IDB's), observed in aluminum nitride, have been investigated using conventional transmission electron microscopy, convergent beam electron diffraction, high-resolution transmission electron microscopy, analytical electron microscopy, and atomistic computer simulations. The interfacial structure and chemistry of the curved and facetted defects have been studied, and based upon the experimental evidence, a single model has been proposed for the curved IDB which is consistent with all three observed morphologies. The interface model comprises a continuous nitrogen sublattice, with the aluminum sublattice being displaced across a {1011} plane, and having a displacement vector R = 0.23〈0001〉. This displacement translates the aluminum sublattice from upwardly pointing to downwardly pointing tetrahedral sites, or vice versa, in the wurtzite structure. The measured value of the displacement vector is between 0.05〈0001〉 and 0.43〈0001〉; the variation is believed to be due to local changes in chemistry. This is supported by atomistic calculations which indicate that the interface is most stable when both aluminum vacancies and oxygen ions are present at the interface, and that the interface energy is independent of displacement vector in the range of 0.05〈0001〉 to 0.35〈0001〉. The curved IDB's form as a result of nonstoichiometry within the crystal. The choice of curved IDB morphology is believed to be controlled by local changes in chemistry, nonstoichiometry at the interface, and proximity to other planar IDB's (the last reason is explained in Part III). A number of possible formation mechanisms are discussed for both planar and curved IDB's. The Burgers vector for the dislocation present at the intersection of the planar and curved IDB's was determined to be b = 1/3〈1010〉 + t〈0001〉, where tmeas = 0.157 and tcalc = 0.164.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hagege, S., Ishida, Y., and Tanaka, S., ISE Grain Boundary Meeting, July 1987, Lake Placid, NY (1987).Google Scholar
2Westwood, A. D. and Notis, M. R., Adv. Ceram. 26, 171187 (1989).Google Scholar
3McKernan, S. and Carter, C. B., in Advanced Electronic Packaging Materials, edited by Barfknecht, A.T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1989), pp. 289294.Google Scholar
4McKernan, S., Norton, M. G., and Carter, C. B., in High Resolution Electron Microscopy Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), pp. 267272.Google Scholar
5Hagege, S., Tanaka, S., and Ishida, Y., J. Phys. 49, C5, 189194 (1988).Google Scholar
6Hagege, S., Tanaka, S., and Ishida, Y., J. Jpn. Inst. Metals 52, 11921198 (1988).CrossRefGoogle Scholar
7Hagege, S. and Ishida, Y., Philos. Mag. A 63, 241258 (1991).CrossRefGoogle Scholar
8Westwood, A. D. and Notis, M. R., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1989), pp. 295300.Google Scholar
9Harris, J. H., Youngman, R. A., and Teller, R. G., J. Mater. Res. 5, 17631773 (1990).CrossRefGoogle Scholar
10Berger, A., J. Am. Ceram. Soc. 74, 11481151 (1991).CrossRefGoogle Scholar
11Westwood, A. D. and Notis, M. R., J. Am. Ceram. Soc. 74, 12261239 (1991).CrossRefGoogle Scholar
12Westwood, A. D., Michael, J. R., and Notis, M.R., in Microbeam Analysis 1991, edited by Howitt, D.G. (San Francisco Press, San Francisco, CA, 1991), pp. 245249.Google Scholar
13McCartney, M.R., Youngman, R. A., and Teller, R.G., Ultramicrosc. 40, 291299 (1992).CrossRefGoogle Scholar
14Westwood, A. D., Michael, J. R., and Notis, M. R., J. Microsc. 167, 287302 (1992).CrossRefGoogle Scholar
15Westwood, A. D., Youngman, R. A., McCartney, M.R., Cormack, A. N., and Notis, M.R., J. Mater. Res. 10, 12701286 (1995).CrossRefGoogle Scholar
16Tafto, J. and Spence, J.C.H., J. Appl. Crystallogr. 15, 6064 (1982).CrossRefGoogle Scholar
17Snykers, M., Serneels, R., Delavignette, P., Gevers, G., Van Landuyt, J., and Amelinckx, S., Phys. Status Solidi A 41, 5163 (1977).CrossRefGoogle Scholar
18Youngman, R. A., Harris, J. H., Labun, P. A., Graham, R. J., and Weiss, J. K., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater.Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1989), pp. 301306.Google Scholar
19Pirouz, P., Chorey, C. M., and Powell, J. A., J. Appl. Phys. Lett. 50, 221223 (1987).CrossRefGoogle Scholar
20Lambrecht, W.R. L. and Segall, B., Phys. Rev. B 41, 29482958 (1990).CrossRefGoogle Scholar
21Kim, J. C. and Goo, E., J. Am. Ceram. Soc. 73, 877884 (1990).CrossRefGoogle Scholar
22Bruley, J., Bremer, U., and Krasevec, V., J. Am. Ceram. Soc. 75, 31273128 (1992).CrossRefGoogle Scholar
23Makovec, K. and Trontelj, M., J. Am. Ceram. Soc. 77, 12021208 (1994).CrossRefGoogle Scholar
24Snykers, M., Delavignette, P., and Amelinckx, S., Mater. Res. Bull. 7, 831840 (1972).CrossRefGoogle Scholar
25Liliental-Weber, Z., O'Keefe, M. A., and Washburn, J., Ultramicrosc. 30, 2630 (1989).CrossRefGoogle Scholar
26Shiojiri, M., Kaito, C., Sekimoto, S., and Nakamura, N., Philos. Mag. A 46, 495505 (1982).CrossRefGoogle Scholar
27Shaw, T. M. and Thomas, G., J. Solid State Chem. 33, 6382 (1980).CrossRefGoogle Scholar
28Youngman, R. A., private communication (1991).Google Scholar
29Goodman, P. and Secomb, T. W., Acta Crystallogr. A 33, 126133 (1977).CrossRefGoogle Scholar
30Van der Biest, O. and Thomas, G., Acta Crystallogr. A 31, 7076 (1975).CrossRefGoogle Scholar
31Miyazawa, K. and Ishida, Y., Ultramicrosc. 22, 231238 (1987).CrossRefGoogle Scholar
32Miyazawa, K., Ishida, Y., and Suga, T., Philos. Mag. A 58, 825832 (1988).CrossRefGoogle Scholar
33Rasmussen, D. R. and Carter, C. B., J. Electron Microsc. Tech. 18, 429436 (1989).CrossRefGoogle Scholar
34Rasmussen, D. R., Cho, N., Susnitzky, D. W., and Carter, C.B., Ultramicrosc. 30, 2732 (1989).CrossRefGoogle Scholar
35Chen, T. T., Pirouz, P., and Ernst, F., in Advances in Materials, Processing and Devices in I1I-V Compound Semiconductors, edited by Sadana, D. K., Eastman, L., and Dupuis, R. (Mater. Res. Soc. Symp. Proc. 144, Pittsburgh, PA, 1989), pp. 189194.Google Scholar
36Pauling, L., The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960), pp. 64107.Google Scholar