Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T23:22:29.975Z Has data issue: false hasContentIssue false

Oxidation behavior of aluminum nitride

Published online by Cambridge University Press:  31 January 2011

A. Bellosi
Affiliation:
CNR-IRTEC, Research Institute for Ceramics Technology, Faenza, Italy
E. Landi
Affiliation:
CNR-IRTEC, Research Institute for Ceramics Technology, Faenza, Italy
A. Tampieri
Affiliation:
CNR-IRTEC, Research Institute for Ceramics Technology, Faenza, Italy
Get access

Abstract

The evaluation of the thermal stability of three different fully dense AlN materials in the temperature range of 600 °C to 1400 °C in air indicates the strong effect of the starting composition on the oxidation process. The oxidation resistance of pure AlN and Y2O3-doped AlN was found to be good up to ≍1350 °C. The kinetics are linear (1100 ≤ T ≤ 1400 °C) and the process is governed by a surface reaction that gives rise to the formation of a porous, nonprotective oxide scale, where Al2O3 and Y-aluminates (i.e., AlN–Y2O3) have been found as crystalline reaction products. For AlN-CaC2, higher oxidation rates indicate that the outward migration of Ca modifies the reaction mechanisms. Linear kinetics in the range 1100 ≤ T ≤ 1200 °C are followed by parabolic kinetics at higher temperatures (T > 1250 °C); with regard to the latter behavior, an activation energy of 160 kJ/mole could indicate the diffusion of oxygen through the oxidation scale as the rate-controlling mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Morz, T.J., Ceram. Bull. 70 (5), 848850 (1991).Google Scholar
2Boch, P., Glandus, J. C., Jarrige, J., Lecompte, J. P., and Mexmain, J., Ceramics Int. 8, 3440 (1982).CrossRefGoogle Scholar
3Kuramoto, N., Taniguchi, N., and Aso, I., Ceram. Bull. 68 (4), 883887 (1989).Google Scholar
4Thevenot, F., Ind. Ceramique 853, 681685 (1990).Google Scholar
5Sheppard, M., Ceram. Bull. 69 (11), 18011803 (1990).Google Scholar
6Ruchmich, S., Kranzmann, A., Bischoff, E., and Brook, R.J., J. Europ. Ceram. Soc. 7, 335341 (1991).CrossRefGoogle Scholar
7Streicher, E., Chartier, T., Boch, P., Denanot, H. F., and Rabier, J., J. Europ. Ceram. Soc. 6, 2329 (1990).CrossRefGoogle Scholar
8Billy, M. and Mexmain, J., World Ceramics 2, 9195 (1985).Google Scholar
9Bellosi, A. and Babini, G. N., “Sintering and Characterization of AIN”, Proc. of the 2° ECerS Meeting, Augsburg, September 1991.Google Scholar
10Sato, T., Haryu, K., Endo, T., and Shimada, M., J. Mater. Sci. 22, 22772280 (1987).CrossRefGoogle Scholar
11Larenko, V.A. and Alexeev, A.F., Ceramics Int. 9 (3), 8082 (1983).CrossRefGoogle Scholar
12Katnani, A.D. and Papathomas, K.I., J. Vac. Sci. Technol. 4, 13351340 (1987).CrossRefGoogle Scholar
13Tetard, D. and Billy, M., in React. Kinet. Heterogeneous Chem.Syst., Proc. Meet. Soc. Chim. Phys. 25th, edited by Barret, P. (Elsevier, Amsterdam, 1975), pp. 512519.Google Scholar
14Cooper, C. F., George, C. M., and Hopkins, S. W., in Spec. Ceram. Proc. Symp. Brit. Ceram. Res. Assoc, 1962 (Academic Press, London, New York, 1963), pp. 4975.Google Scholar
15Billy, M., Goeuriot, P., Labbe, J. C., Villechenoux, J. M., Roult, G., and Bardolle, J., Mater. Chem. 6 (2), 8193 (1981).Google Scholar
16Billy, M., Jarrige, J., Lecompte, J.P., Mexmain, J., and Yesfsah, S., Rev. Chim. Miner. 19 (6), 673683 (1982).Google Scholar
17Coles, N. G., Glasson, D. R., and Jayaweera, S.A.A., J. Appl. Chem., Lond. 18, 178181 (1968).Google Scholar
18Barthelme, P., Ansorge, F., Kulig, M., Hofmann, T., and Russel, C., in Euro–Ceramics, edited by DeWith, G., Terpstra, R. A., and Metseelar, R. (Elsevier Applied Science, London & New York, 1989), Vol. 1, 1/479–1/483.Google Scholar
19Bowen, P., Highfield, J.G., Mocellin, A., and Ring, T.A., J. Am. Ceram. Soc. 73 (3), 724728 (1990).CrossRefGoogle Scholar
20Graziani, T. and Bellosi, A., submitted for publication to Mater. Chem. Phys.Google Scholar
21Abid, A., Bensalem, R., and Sealy, B.J., J. Mater. Sci. 21, 13011304 (1986).CrossRefGoogle Scholar
22Suryanarayana, D., J. Am. Ceram. Soc. 73 (4), 11081110 (1990).CrossRefGoogle Scholar
23Azema, N., Durand, J., Berjoan, R., Dupuy, C., and Cot, L., J. Europ. Ceram. Soc. 8, 291298 (1991).CrossRefGoogle Scholar
24Jones, S. and Scott, W. D., in Advances in Ceramics (The American Ceramic Society, Westerville, OH, 1989), Vol. 26, pp. 151157.Google Scholar