Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T23:26:21.715Z Has data issue: false hasContentIssue false

Oscillatory thickness dependences of the Seebeck coefficient in nanostructures based on compounds IV–VI

Published online by Cambridge University Press:  16 February 2012

Dmytro M. Freik
Affiliation:
Physics and Chemistry Institute, PreCarpathian Vasyl Stefanyk National University, Ivano-Frankivsk 76018, Ukraine
Igor K. Yurchyshyn*
Affiliation:
Physics and Chemistry Institute, PreCarpathian Vasyl Stefanyk National University, Ivano-Frankivsk 76018, Ukraine
Volodymyr Yu. Potyak
Affiliation:
Physics and Chemistry Institute, PreCarpathian Vasyl Stefanyk National University, Ivano-Frankivsk 76018, Ukraine
Yuriy V. Lysiuk
Affiliation:
Physics and Chemistry Institute, PreCarpathian Vasyl Stefanyk National University, Ivano-Frankivsk 76018, Ukraine
*
a)Address all correspondence to this author. e-mail: igoor2010@gmail.com
Get access

Abstract

The thermoelectric parameters have been investigated depending on the thickness of the layer of nanostructures IV–VI (PbS, PbSe, PbTe, and SnTe). Based on the theoretical model of quantum well (QW) with infinitely high walls, it is demonstrated that this model explains nonmonotonous behavior of the Seebeck coefficient S with the change of the well width. On the basis of oscillation period Δdexp, we have approached the theoretical d-dependence of the coefficient S to the experimental one and defined the value of the Fermi energy in the corresponding nanostructures. It has been established that the minimum QW width dmin, where the first energy level coincides with the Fermi energy, is equal to the oscillation period of the Seebeck coefficient in this structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davies, J.H.: The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge University Press, Cambridge, England, 1998), p. 451.Google Scholar
2.Dresselhaus, M.S., Ghen, G., Rang, M.I., Yang, R., Lee, H., Wang, D., Ren, Z., Fleurial, J-P., and Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
3.Hicks, L.D., Harman, T.C., Sun, X., and Dresselhaus, M.S.: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B: Condens. Matter 53, R10493 (1996).CrossRefGoogle ScholarPubMed
4.Casian, A., Sur, I., Scherrer, H., and Dashevsky, Z.: Thermoelectric properties of n-type PbTe/Pb1-xEuxTe quantum wells. Phys. Rev. B 61(23), 15965 (2000).Google Scholar
5.Harman, T.C., Spears, D.L., and Manfra, M.J.: High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Mater. 25, 1121 (1996).CrossRefGoogle Scholar
6.Sur, I., Casian, A., and Baladin, A.: Electronic thermal conductivity and thermoelectric figure of merit of n-type PbTe/PbEuTe quantum wells. Phys. Rev. B 69, 035306 (2004).CrossRefGoogle Scholar
7.Rogacheva, E.I., Nashchekina, O.N., Vekhov, Y.O., Dresselhaus, M.S., and Cronin, S.B.: Effect of thickness on the thermoelectric properties of PbS thin films. Thin Solid Films 423, 115 (2003).Google Scholar
8.Rogacheva, E.I., Tavrina, T.V., Nashchekina, O.N., Grigorov, S.N., Nasedkin, K.A., Dresselhaus, M.S., and Cronin, S.B.: Quantum-size effects in PbSe quantum wells. Appl. Phys. Lett. 80(15), 2690 (2002).CrossRefGoogle Scholar
9.Rogacheva, E.I., Nashchekina, O.N., Grigorov, S.N., Dresselhaus, M.S., and Cronin, S.B.: Oscillatory behaviour of the transport properties in PbTe quantum wells. Nanotechnology 14, 53 (2003).Google Scholar
10.Rogacheva, E.I., Nashchekina, O.N., Meriuts, A.V., Lyubchenko, S.G., Dresselhaus, M.S., and Dresselhaus, G.: Quantum-size effects in n-PbTe/p-SnTe/n-PbTe heterostructures. Appl. Phys. Lett. 86, 063103 (2005).Google Scholar
11.Lin, Y.-M. and Dresselhaus, M.S.: Thermoelectric properties of superlattice nanowires. Phys. Rev. B 68, 075304 (2003).CrossRefGoogle Scholar
12.Springholz, G., Holy, V., Pinczolits, M., Bauer, P., and Bauer, G.: Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant. Science 282, 734 (1998).Google Scholar
13.Springholz, G., Pinczolits, M., Mayer, P., Holy, V., Bauer, G., Kang, H., and Salamanca-Riba, L.: Tuning of vertical and lateral correlations in self-organized PbSe/Pb1-xEuxTe quantum dot superlattices. Phys. Rev. Lett. 84, 4669 (2000).Google Scholar
14.Harman, T.C., Walsh, M.P., LaForge, B.E., and Turner, G.W.: Nanostructured thermoelectric materials. J. Electron. Mater. 34(5), L19L22 (2005).CrossRefGoogle Scholar
15.Harman, T.C., Taylor, P.J., Walsh, M.P., and LaForge, B.E.: Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229 (2002).Google Scholar
16.Baladin, A. and Wang, K.A.: Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84, 6149 (1998).Google Scholar
17.Singh, M.P. and Bhandari, C.M.: Non-monotonic thermoelectric behavior of lead telluride in quantum-well-like structures. Solid State Commun. 133, 29 (2005).CrossRefGoogle Scholar
18.Bhandari, C.M.: chapters 4–6 in CRC Handbook of Thermoelectrics edited by Rowe, D.M. (CRC Press, Boca Raton, FL, 1995), p. 701.Google Scholar
19.Drabble, J.R. and Coldsmid, H.J.: Thermal Conduction in Semiconductors (chapter 4), (London: Pergaman Press, Oxford, England, 1961), p. 105.Google Scholar
20.Rawich, Y.I., Efimova, B.A., and Smirnova, I.A.: Research Methods as Applied to Semiconductor Lead Chalcogenides PbTe, PbSe, PbS (Moscow: Science, 1968), p. 241.Google Scholar
21.Rogacheva, E.I., Krivulkin, I.M., Nashchekina, O.N., Sipatov, A.Yu., Volobuev, V.A., and Dresselhaus, M.S.: Percolation transition of thermoelectric properties in PbTe thin films. Appl. Phys. Lett. 78(21), 3238 (2001).CrossRefGoogle Scholar