Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:52:49.309Z Has data issue: false hasContentIssue false

On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide

Published online by Cambridge University Press:  31 January 2011

Spyros Gallis*
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-SUNY, Albany, New York 12203
Alain E. Kaloyeros*
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-SUNY, Albany, New York 12203
*
a) Current address: International Business Machines, Hopewell Junction, New York 10598
b) Address all correspondence to this author. e-mail: akaloyeros@uamail.albany.edu
Get access

Abstract

The composition, structure, morphology, and optical characteristics of hydrogenated amorphous silicon-oxycarbide (a-SiCxOyHz) materials were investigated as a function of experimental processing conditions and post-deposition thermal treatment. Thermal chemical vapor deposition (TCVD) was applied to the growth of three different types of a-SiCxOyHz films, namely, SiC-like (SiC1.08O0.07H0.21), Si-C-O (SiC0.50O1.20H0.22), and SiO2-like (SiC0.20O1.70H0.24). The resulting films were subsequently annealed at temperatures ranging from 500 °C to 1100 °C for 1 h in an argon atmosphere. The composition, structure, and morphology of as-deposited and post-annealed films were characterized by Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), nuclear-reaction analysis (NRA), and scanning electron microscopy. Corresponding optical properties were assessed by spectroscopic ultraviolet-visible ellipsometry (UV-VIS-SE). These studies led to the identification of an optimized process window for the growth of Er doped silicon oxycarbide (SiC0.5O1.0:Er) thin film with strong room-temperature photoluminescence emission measured around 1540 nm within a broad (460 nm to 600 nm) wavelength band. Associated modeling studies showed that the effective cross section for Er excitation in the SiC0.5O1.0:Er matrix was approximately four orders of magnitude larger than its analog for direct optical excitation of Er ions.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Grill, A.: Plasma enhanced chemical vapor deposited SiCOH dielectrics: From low-k to extreme low-k interconnect materials. J. Appl. Phys. 93, 1785 (2003).CrossRefGoogle Scholar
2Chiang, C-C., Chen, M-C., Li, L-J., Wu, Z-C., Jang, S-M., and Liang, M-S.: Physical and barrier properties of amorphous silicon-oxycarbide deposited by PECVD from octamethylcyclotetra-siloxane. J. Electrochem. Soc. 151(9), G612 (2004).CrossRefGoogle Scholar
3Wang, M.R., Xie, Rusli J.L., Babu, N., Li, C.Y., and Rakesh, K.: Study of oxygen influences on carbon doped silicon oxide low-k thin films deposited by plasma enhanced chemical vapor deposition. J. Appl. Phys. 96, 829 (2004).CrossRefGoogle Scholar
4Salib, M., Liao, L., Jones, R., Morse, M., Liu, A., Samara-Rubio, D., Alduino, D., and Paniccia, M.: Silicon photonics. Intel Technol. J. 8, 143 (2004).Google Scholar
5Pavesi, L. and Lockwood, D.J.: Silicon Photonics (Springer, Berlin, 2004).Google Scholar
6Jalall, B.: Silicon lasers. APS News 15(3), 7 (2006).Google Scholar
7Kim, Y-H., Hwang, M.S., Kim, H.J., Kim, J.Y., and Lee, Y.: Infrared spectroscopy study of low-dielectric constant fluorine-incorporated and carbon-incorporated silicon oxide films. J. Appl. Phys. 90, 3367 (2001).CrossRefGoogle Scholar
8Gallis, S., Huang, M., Efstathiadis, H., Eisenbraun, E., Nyein, E., Hommerich, U., and Kaloyeros, A.E.: Photoluminescence in erbi-um doped silicon oxycarbide thin films. Appl. Phys. Lett. 87, 091901 (2005).CrossRefGoogle Scholar
9Gallis, S., Huang, M., and Kaloyeros, A.E.: Efficient energy transfer from silicon oxycarbide matrix to Er ions via indirect excitation mechanisms. Appl. Phys. Lett. 90, 161914 (2007).Google Scholar
10Gallis, S., Nikas, V., Huang, M., Eisenbraun, E., and Kaloyeros, A.E.: Comparative study of the effects of thermal treatment on the optical properties of hydrogenated amorphous silicon-oxycarbide. J. Appl. Phys. 102, 024302 (2007).CrossRefGoogle Scholar
11Tolstoy, V.P., Chernyshova, I.V., and Skryshevsky, V.A.: Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, New York, 2003), Chap. 5.Google Scholar
12Socrates, G.: Infrared Characteristic Group Frequencies (Wiley, New York, 2001).Google Scholar
13Besling, W.F.A., Goossens, A., Meester, B., and Schoonman, J.: Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films. J. Appl. Phys. 83, 544 (1998).CrossRefGoogle Scholar
14Lisovskii, I.P., Litovchenko, V.G., Lozinskii, V.G., and Steblovskii, G.I.: IR spectroscopic investigation of SiO2 film stucture. Thin Solid Films 213, 164 (1992).Google Scholar
15Calcagno, L., Musumeci, P., Roccaforte, F., Bongiorno, C., and Foti, G.: Crystallization mechanism of amorphous silicon carbide. Appl. Surf. Sci. 184, 123 (2001).CrossRefGoogle Scholar
16Gallis, S., Futschik, U., Sherwood, W., Hayes, S., Fountzoulas, C.G., Castracane, J., Kaloyeros, A.E., and Efstathiadis, H.: Thermal chemical vapor deposition of silicon carbide films as protective coatings for microfluidic structures, in Proceedings of the Materials Research Society Symposium, Silicon Carbide 2002—Materials, Processing and Devices, edited by Saddow, S.E., Larkin, D.J., Saks, N.S., and Schoener, A. (Mater. Res. Soc. Symp. Proc. 672, Warrendale, PA, 2002), K2.4.Google Scholar
17Demichells, F., Pirri, C.F., and Tresso, E.: Influence of doping on the structural and optoelectronic properties of amorphous and microcrystalline silicon carbide. J. Appl. Phys. 72, 1327 (1992).CrossRefGoogle Scholar
18Fang, C.J., Gruntz, K.J., Ley, L., Cardona, M., Demond, F.J., Müller, G., and Kalbitzer, S.: The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques. J. Non-Cryst. Solids 35–36, 255 (1980).CrossRefGoogle Scholar
19Basa, D.K. and Smith, F.W.: Annealing and crystallization processes in a hydrogenated amorphous Si-C alloy film. Thin Solid Films 192, 121 (1990).Google Scholar
20Fujimoto, F., Ootuka, A., Komaki, K-I., Iwata, Y., Yamane, I., Yamashita, H., Hashimoto, Y., Tawada, Y., Nishimura, K., Okamoto, H., and Hamakawa, Y.: Hydrogen content in a-SiC:H films prepared by plasma decomposition of silane and methane or ethylene. Jpn. J. Appl. Phys., Part 1 23, 810 (1984).CrossRefGoogle Scholar
21Nakazawa, K., Ueda, S., Kumeda, M., Morimoto, A., and Shimizu, T.: NMR and IR studies on hydrogenated amorphous Si1–xCx films.Jpn. J. Appl. Phys., Part 1 21, L176 (1982).CrossRefGoogle Scholar
22Smith, K.L. and Black, K.M.: Characterization of the treated surfaces of silicon alloyed pyrolytic carbon and SiC. J. Vac. Sci. Technol., A 2, 744 (1984).CrossRefGoogle Scholar
23Choi, W.K., Ong, T.Y., Tan, L.S., Loh, F.C., and Tan, K.L.: Infrared and x-ray photolectron spectroscopy studies of as-prepared and furnace-annealed radio-frequency sputtered amorphous silicon carbide films. J. Appl. Phys. 83, 4968 (1998).CrossRefGoogle Scholar
24Bell, F.G. and Ley, L.: Photoemission study of SiOx (0≤ x ≤2) alloys. Phys. Rev. B 37, 8383 (1988).Google Scholar
25Wolfe, D.M., Hinds, B.J., Wang, F., Lucovsky, G., Ward, B.L., Xu, M., Nemanich, R.J., and Maher, D.M.: Thermochemical stability of silicon-oxygen-carbon alloy thin films: A model sys-tem for chemical and structural relaxation at SiC-SiO2 interfaces. J. Vac. Sci. Technol., A 17, 2170 (1999).CrossRefGoogle Scholar
26Briggs, D. and Beamson, G.: High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, New York, 1992).Google Scholar
27Esposito, L., Ottaviani, G., Carollo, E., and Bacchetta, M.: Thermal stability of low-dielectric constant porous silica films. Appl. Phys. Lett. 87, 262909 (2005).CrossRefGoogle Scholar
28Das, D., Farjas, J., Roura, P., Viera, G., and Bertran, E.: Thermal oxidation of polymer-like amorphous SixCyHwOz nanoparticles. Diamond Relat. Mater. 10, 1295 (2001).CrossRefGoogle Scholar
29Roura, P., Farjas, J., Rath, C., Serra-Miralles, J., Bertran, E., and Cabarrocas, P. Roca i: Calorimetry of dehydrogenation and dangling-bond recombination in several hydrogenated silicon materials. Phys. Rev. B 73, 085203 (2006).CrossRefGoogle Scholar
30Garcia-Caurel, E., Viera, G., Bertran, E., and Canillas, A.: Study of the optical and structural properties of silicon-carbon nanometric powder using infrared phase modulated ellipsometry and electron microscopy. Phys. Status Solidi A 175, 373 (1999).Google Scholar
31Stesmans, A.: Dissociation kinetics of hydrogen-passivated P b defects at the (111)Si/SiO2 interface. Phys. Rev. B 61, 8393 (2000).CrossRefGoogle Scholar
32Cui, H., Carter, R.J., Moore, D.L., Peng, H-G., Gidley, D.W., and Burke, P.A.: Impact of reductive N2/H2 plasma on porous low-dielectric constant SiCOH thin films. J. Appl. Phys. 97, 113302 (2005).Google Scholar
33Montero, I., Galán, L., Najmi, O., and Albella, J.M.: Disorder-induced vibration-mode coupling in SiO2 films observed under normal-incidence infrared radiation. Phys. Rev. B 50, 4881 (1994).CrossRefGoogle ScholarPubMed
34Lucovsky, G., Mantini, M.J., Srivastava, J.K., and Irene, E.A.: Low temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy. J. Vac. Sci. Technol., B 5, 530 (1987).Google Scholar
35Maex, K., Baklanov, M.R., Shamiryan, D., Iacopi, F., Brongersma, S.H., and Yanovitskaya, Z.S.: Low-dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 (2003).CrossRefGoogle Scholar
36Sun, C.Q.: A model of bonding and band-forming for oxides and nitrides. Appl. Phys. Lett. 72, 1706 (1998).CrossRefGoogle Scholar