Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T21:34:42.420Z Has data issue: false hasContentIssue false

Observations and implications of grain boundary dislocation networks in high-angle YBa2Cu3O7−δ grain boundaries

Published online by Cambridge University Press:  31 January 2011

S. E. Babcock
Affiliation:
Applied Superconductivity Center, University of Wisconsin, Madison, Wisconsin 53706
D. C. Larbalestier
Affiliation:
Applied Superconductivity Center and Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706
Get access

Abstract

Regular networks of localized grain boundary dislocations (GBDs) have been imaged by means of transmission electron microscopy in three different types of high-angle grain boundaries in YBa2Cu3O7-δ, implying that these boundaries possess ordered structures upon which a significant periodic strain field is superimposed. The occurrence of these GBD networks is shown to be consistent with the GBD/Structural Unit and Coincidence Site Lattice (CSL)/Near CSL descriptions for grain boundary structure. Thus, these dislocations appear to be intrinsic features of the boundary structure. The spacing of the observed GBDs ranged from ∼10 nm to ∼100 nm. These GBDs make the grain boundaries heterogeneous on a scale that approaches the coherence length and may contribute to their weak-link character by producing the “superconducting micro-bridge” microstructure which has been suggested on the basis of detailed electromagnetic measurements on similar samples.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, E. K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
2Nakahara, S., Fisanick, G. J., Yan, M. F., van Dover, R. B., and Boone, T., Appl. Phys. Lett. 53, 2105 (1988).CrossRefGoogle Scholar
3Schrott, A.G., Cohen, S.L., Dinger, T. R., Himpsel, F. J., Yarmoff, J. A., and Purtell, R., in Thin Film Processing and Characterization of High Temperature Superconductors American Vacuum Society, edited by Harper, J. M. E., Colton, R. J., and Feldman, L. C., American Institute of Physics Conference Proceedings (American Institute of Physics, New York, 1988), Vol. 156, pp. 349357.Google Scholar
4Babcock, S.E., Kelly, T. F., Lee, P. J., Seuntjens, J. M., La-Vanier, L.A., and Larbalestier, D. C., Physica C 152, 25 (1988).CrossRefGoogle Scholar
5Chiang, Y-M., Ikeda, J. A.S., and Roshko, A., in Ceramic Superconductors, edited by Yan, M. F. (The American Ceramic Society, Westerville, OH, 1988), p. 607.Google Scholar
6Kroeger, D. M., Choudhury, A., Brynestad, J., Williams, R. K., Padgett, R. A., and Coghlan, W. A., J. Appl. Phys. 64, 331 (1988).CrossRefGoogle Scholar
7Verhoeven, J. D., Bevolo, A. J., McCallum, R.W., Gibson, E. D., and Noack, M. A., Appl. Phys. Lett. 52, 745 (1988).CrossRefGoogle Scholar
8Blendell, J. E., Handwerker, C.A., Vaudin, M.D., and Fuller, E. R., J. Crystal Growth 89, 93 (1988).CrossRefGoogle Scholar
9Romano, L.T., Wilshaw, P. R., Long, N. J., and Grovenor, C. R. M., Supercond. Sci. Technol. 1, 285 (1989).CrossRefGoogle Scholar
10Kogure, T., Zhang, Y., Levonmaa, R., Kontra, R., Wang, W-X., Rudman, D. A., Yurek, G. J., and Sande, J. B. Vander, Physica C 156, 707 (1988).CrossRefGoogle Scholar
11Sarikaya, M. and Thiel, B. L., J. Am. Ceram. Soc. 71, C305 (1988).CrossRefGoogle Scholar
12Chisholm, M. F. and Smith, D. A., Phil. Mag. A 59, 181 (1989).CrossRefGoogle Scholar
13Babcock, S. E. and Larbalestier, D. C., Appl. Phys. Lett. 55, 393 (1989).CrossRefGoogle Scholar
14Sutton, A. P. and Vitek, V., Phil. Trans. R. Soc. London A309, 1,37,55 (1983).Google Scholar
15Balluffi, R.W. and Bristowe, P. D., Surf. Sci. 144, 28 (1984).CrossRefGoogle Scholar
16Brokman, A. and Balluffi, R.W., Acta Metall. 29, 1703 (1981).CrossRefGoogle Scholar
17Hirth, J. P. and Lothe, H., Theory of Dislocations (John Wiley and Sons, Inc., New York, 1982), Chap. 19.Google Scholar
18Hampshire, D. P., Cai, X., Seuntjens, J. M., and Larbalestier, D. C., Supercond. Sci. and Tech. 1, 12 (1988).CrossRefGoogle Scholar
19Kestel, B. J., Ultramicroscopy 19, 205 (1986).CrossRefGoogle Scholar
20Kirk, M.A., Baker, M.C., Liu, J.Z., Lam, D. J., and Weber, H.W. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 99, p. 209.Google Scholar
21Hirsh, P., Howie, A., Nicholson, R. B., Pashley, D.W., and Whelan, M. J., Electron Microscopy of Thin Crystals (Robert E. Krieger Publishing Co., Malabar, FL, 1977), Chap. 11.Google Scholar
22Sun, C. P. and Balluffi, R.W., Phil. Mag. A 46, 49, 63 (1982).CrossRefGoogle Scholar
23Smith, D. A., Chisholm, M. F., and Clabes, J., Appl. Phys. Lett. 53, 2344 (1988).CrossRefGoogle Scholar
24Teitz, L. A., De Cooman, B. C., Carter, C. B., Lathrop, D. K., Russek, S. E., and Buhrman, R. A. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 99, p. 719.Google Scholar
25Wolf, D., J. Physique 46, C4197 (1985).CrossRefGoogle Scholar
26Chan, Siu-Wai and Balluffi, R.W., Acta Metall. 34, 2191 (1986).CrossRefGoogle Scholar
27Merkle, K. L. and Smith, D. J., Ultramicroscopy 22, 57 (1987).CrossRefGoogle Scholar
28Carter, C. B., Acta Metall. 36, 2753 (1988).CrossRefGoogle Scholar
29Balluffi, R.W. and Schindler, R., V Konferncja Mikroskopii Electronowej Ciała Stałego, Warszawa-Jadwisin, 51 (1978).Google Scholar
30Babcock, S. E. and Balluffi, R.W., Phil. Mag. A 55, 643 (1987).CrossRefGoogle Scholar
31d'Anterroches, C. and Bourret, A., Phil. Mag. A 49, 738 (1984).CrossRefGoogle Scholar
32Chen, F-R. and King, A. H., Phil. Mag. A 57, 431 (1988).CrossRefGoogle Scholar
33Liu, J-S. and Balluffi, R.W., Scripta Metall. 19, 123 (1985).CrossRefGoogle Scholar
34Kvam, E. P., Ph.D. Thesis, Massachusetts Institute of Technology, 1985.Google Scholar
35Seuntjens, J. M. and Larbalestier, D. C., J. Appl. Phys. 67, 2007 (1990).CrossRefGoogle Scholar
36Osamura, K., Takayama, T., and Ochiai, S., Appl. Phys. Lett. 55, 396 (1989).CrossRefGoogle Scholar
37Peterson, R. L. and Ekin, J.W., Physica C 157, 325 (1989).CrossRefGoogle Scholar
38Yamashita, T., Kawakami, A., Noge, S., Xu, W., Takata, M., Komatsu, T., and Matusita, K., IEEE Trans. Mag. 25, 923 (1989).CrossRefGoogle Scholar
39Likharev, K. K., Rev. Modern Phys. 51, 101 (1979).CrossRefGoogle Scholar
40Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C. C., Chi, J., Oprysko, M., and Scheuermann, M., Phys. Rev. Lett. 60, 1653 (1988).CrossRefGoogle Scholar
41Larbalestier, D. C., Babcock, S. E., Cai, X., Cooley, L.D., Daeumling, M., Hampshire, D. P., McKinnell, J., and Seuntjens, J. M., Progress in High Temperature Superconductivity, Proceedings of the Tokai University International Workshop Materials, edited by Nakajima, S. (World Scientific, NJ, 1989), Vol. 18, pp. 128143.Google Scholar