Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:00:23.811Z Has data issue: false hasContentIssue false

Observation of linear defects in Al particles below 7 nm in size

Published online by Cambridge University Press:  01 June 2006

Dmitri V. Louzguine-Luzgin*
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
*
a) Address all correspondence to this author. e-mail: dml@imr.tohoku.ac.jp
Get access

Abstract

An as-solidified structure of an Al-based ribbon sample produced by the melt-spinning technique was studied by x-ray diffractometry and transmission electron microscopy. The addition of Pd to Al-Y-Ni-Co alloys caused formation of the highly dispersed primary α-Al nanoparticles about 3–5 nm in size homogeneously embedded in the glassy matrix upon solidification. The first direct observation of microstrain and dislocations quenched in nanoparticles with a size below 7 nm is provided.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Ohtera, K., Tsai, A.P., Masumoto, T.: New amorphous Al-Y, Al-La and Al-Ce alloys prepared by melt spinning. Jpn. J. Appl. Phys. 27 L736 (1988).CrossRefGoogle Scholar
2.Inoue, A., Ohtera, K., Tsai, A.P., Masumoto, T.: New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M=Fe, Co, Ni or Cu) systems. Jpn. J. Appl. Phys. 27 L280 (1988).CrossRefGoogle Scholar
3.He, Y., Poon, S.J., Shiflet, G.J.: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).CrossRefGoogle ScholarPubMed
4.Inoue, A., Ohtera, K., Tsai, A.P., Masumoto, T.: Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm2). Jpn. J. Appl. Phys. 27, L479 (1988).CrossRefGoogle Scholar
5.Shiflet, G.J., He, Y., Poon, S.J.: Mechanical properties of a new class of metallic glasses based on aluminum. J. Appl. Phys. 64, 6863 (1988).CrossRefGoogle Scholar
6.Inoue, A., Matsumoto, N., Masumoto, T.: Al-Ni-Y-Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity. Mater. Trans. JIM 31, 493 (1990).CrossRefGoogle Scholar
7.Louzguine, D.V., Inoue, A.: Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses. Appl. Phys. Lett. 79, 3410 (2001).CrossRefGoogle Scholar
8.Kim, Y.H., Inoue, A., Masumoto, T.: Ultrahigh mechanical strengths of Al88Y2Ni10-xMx (M=Mn, Fe or Co) amorphous alloys containing nanoscale fcc-Al particles. Mater. Trans. JIM 32, 599 (1991).CrossRefGoogle Scholar
9.Hono, K., Zhang, Y., Tsai, A.P., Inoue, A., Sakurai, T.: Solute partitioning in partially crystallized Al-Ni-Ce(-Cu) metallic glasses. Script. Mater. 32, 191 (1995).CrossRefGoogle Scholar
10.Massalski, T.B.: Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990).Google Scholar
11.Inoue, A.: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).CrossRefGoogle Scholar
12.Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).CrossRefGoogle ScholarPubMed
13.Perepezko, J.H., Hebert, R.J., Tong, W.S.: Amorphization and nanostructure synthesis in Al alloys. Intermetallics 10, 1079 (2002).CrossRefGoogle Scholar
14.Perepezko, J.H.: Nucleation-controlled reactions and metastable structures. Prog. Mater. Sci. 49, 263 (2004).CrossRefGoogle Scholar
15.Louzguine, D.V., Inoue, A.: Investigation of structure and properties of the Al–Y–Ni–Co–Cu metallic glasses. J. Mater. Res. 17, 1014 (2002).CrossRefGoogle Scholar
16.Louzguine, D.V., Inoue, A.: Strong influence of supercooled liquid on crystallization of the Al85Y4Nd4Ni5Co2 metallic glass. Appl. Phys. Lett. 78, 3061 (2001).CrossRefGoogle Scholar
17.Louzguine, D.V., Inoue, A.: Crystallization behaviour of Al-based metallic glasses below and above the glass-transition temperature. J. Non-Cryst. Solids 311, 281 (2002).CrossRefGoogle Scholar
18.Guo, F.Q., Poon, S.J., and Shiflet, G.J.: Effect of the supercooled liquid region on Al85Ni7Gd8 metallic glass in crystallization products, in Supercooled Liquids, Glass Transition, and Bulk Metallic Glasses, edited by Egami, T., Greer, A.L., Inoue, A., and Ranganathan, S. (Mater. Res. Soc. Proc. 754, Warrendale, PA, 2003) CC11.6, p. 391.Google Scholar
19.Zhang, K., Alexandrov, I.V., Valiev, R.Z., Lu, K.: Structural characterization of nanocrystalline copper by means of x-ray diffraction. J. Appl. Phys. 88, 5617 (1996).CrossRefGoogle Scholar
20.Van Swygenhoven, H., Derlet, P.M., Hasnaoui, A.: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66, 024101 (2002).CrossRefGoogle Scholar
21.Greer, A.L.: Partially or fully devitrified alloys for mechanical properties. Mater. Sci. Eng. A304–306, 68 (2001).CrossRefGoogle Scholar
22.Gorelik, S.S., Skakov, U.A., Rastorguev, L.N.: X-Ray and Electron-Optic Analysis (in Russian) (MISIS, Moscow, 1994), p. 328.Google Scholar
23.Louzguine, D.V., Inoue, A.: Devitrification of Ni-based glassy alloys containing noble metals in relation with the supercooled liquid region. J. Non-Cryst. Solids 337, 161 (2004).CrossRefGoogle Scholar
24.Huang, J.Y., Wu, Y.K., Ye, H.Q.: Deformation structures in ball milled copper. Acta Mater. 44, 1211 (1996).CrossRefGoogle Scholar
25.Hebert, R.J., Perepezko, J.H., Rösner, H., Wilde, G.: Dislocation formation during deformation-induced synthesis of nanocrystals in amorphous and partially crystalline amorphous Al88Y7Fe5 alloy. Script. Mater. 54, 25 (2006).CrossRefGoogle Scholar
26.Mitra, R., Chiou, W-A., Weertman, J.R.: In situ study of deformation mechanisms in sputtered free-standing nanocrystalline nickel films. J. Mater. Res. 19, 1029 (2004).CrossRefGoogle Scholar
27.Li, D.X., Ping, D.H., Ye, H.Q., Qin, X.Y., Wu, X.J.: HREM study of the microstructure in nanocrystalline materials. Mater. Lett. 18, 29 (1993).CrossRefGoogle Scholar
28.Aronin, A.S., Abrosimova, G.E., Kir’yanov, Yu.V.: Formation and structure of nanocrystals in an Al86Ni11Yb3 Alloy. Phys. Solid State 43, 2003 (2001).CrossRefGoogle Scholar
29.Chen, Z., Ding, J.: Molecular dynamics studies on dislocations in crystallites of nanocrystalline α-iron. Nanostruct. Mater. 10, 205 (1998).CrossRefGoogle Scholar
30.Yamakov, V., Wolf, D., Phillpot, S.R., Gleiter, H.: Dislocation– dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation. Acta Mater. 51, 4135 (2003).CrossRefGoogle Scholar
31.Van Swygenhoven, H., Derlet, P.M.: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).CrossRefGoogle Scholar
32.Van Swygenhoven, H.: Grain boundaries and dislocations. Science 296, 66 (2002).CrossRefGoogle ScholarPubMed
33.Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y., Cheng, X.: Deformation twinning in nanocrystalline aluminum. Science 300, 1275 (2003).CrossRefGoogle ScholarPubMed
34.Ma, E.: Watching the nanograins roll. Science 305, 623 (2004).CrossRefGoogle ScholarPubMed