Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:59:13.731Z Has data issue: false hasContentIssue false

Nucleation of oriented diamond films on nickel substrates

Published online by Cambridge University Press:  31 January 2011

P.C. Yang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7919
W. Zhu
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7919
J.T. Glass
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7919
Get access

Abstract

A seeding and multistep deposition process has been developed to nucleate and grow diamond films directly on Ni substrates in a hot filament chemical vapor deposition system. High quality diamond films have been deposited without graphite codeposition on both 〈100〉 oriented single-crystal Ni and polycrystalline Ni substrates. Both 〈100〉 and 〈111〉 oriented diamond nuclei have been observed depending upon the underlying substrate orientations. Molten metallic phases were found surrounding the diamond nuclei, and it is speculated that a liquid layer composed of nickel, carbon, and hydrogen also formed on the diamond surface during the growth. The oriented diamond is believed to have been achieved by the reorientation of seeded diamond particles into alignment with the Ni substrate due to interaction between the diamond and Ni lattices.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yoshikawa, M., Ishida, H., Ishitani, A., Murakami, T., Koizumi, S., and Inuzuka, T., Appl. Phys. Lett. 57, 428 (1990).CrossRefGoogle Scholar
2Koizumi, S., Murakami, T., Inuzuka, T., and Suzuki, K., Appl. Phys. Lett. 57, 563 (1990).CrossRefGoogle Scholar
3Stoner, B.R. and Glass, J.T., Appl. Phys. Lett. 60, 698 (1992).Google Scholar
4Field, J. E., in The Properties of Diamond, edited by Field, J. E. (Academic Press, London, 1979), p. 284.Google Scholar
5Zhu, W., Wang, X.H., Stoner, B.R., Ma, G.H.M., Kong, H.S., Braun, M.W.H., and Glass, J.T., Phys. Rev. B 47, 6529 (1993).Google Scholar
6Rudder, R. A., Posthill, J. B., Hudson, G. C., Mantini, M. J., and Markunas, R. J., Proc. SPIE on Diamond Optics 969, 72 (1988).Google Scholar
7Belton, D.N. and Schmieg, S.J., J. Appl. Phys. 66, 4223 (1989).CrossRefGoogle Scholar
8Strong, H.M., Acta Metall. 12, 1411 (1964).CrossRefGoogle Scholar
9Wentorf, R. H. Jr., Adv. Chem. Phys. 9, 365 (1965).Google Scholar
10Strong, H.M. and Hanneman, R.E., J. Chem. Phys. 46, 3668 (1967).Google Scholar
11Badzian, A. R. and Badzian, T., in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T. M., Gallois, B. M., and Warren, J. (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, PA, 1992), p. 339.Google Scholar
12Sato, Y., Yashima, I., Fujita, H., Ando, T., and Kamo, M., in New Diamond Science and Technology, edited by Messier, R., Glass, J.T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST2-C3, Pittsburgh, PA, 1991), p. 371.Google Scholar
13Fujita, H., Ando, T., Kamo, M., Tanaka, T., and Sato, Y., in Proc. 1991 Spring Jpn. Appl. Phys. Meeting, edited by Jpn. Phys. Soc. (Tokyo, Japan, 1991), p. 13.Google Scholar
14Yang, H. and Whitten, J. L., J. Chem. Phys. 96, 5529 (1992).Google Scholar
15Johnson, A.D., Daley, S. P., Utz, A.L., and Ceyer, S.T., Science 257, 223 (1992).Google Scholar
16Williams, B.E. and Glass, J.T., J. Mater. Res. 4, 373 (1989).Google Scholar
17Tairov, Y.M., Tsvetkov, V.F., and Khlebnikov, I.I., Cryst, J.. Growth 20, 155 (1973).Google Scholar
18Binsma, J.J.M., Enckevort, W.J.P.V., and Staarink, G.W.M., J. Cryst. Growth 61, 138 (1983).CrossRefGoogle Scholar
19Deryagin, B. V., Fedoseev, D. V., Spitsyn, B. V., Lukyanovich, D. V., Ryabov, B.V., and Larrentev, A.V., J. Cryst. Growth 2, 380 (1968).Google Scholar
20Siegel, B. and Libowitz, G. G., in Metal Hydrides, edited by Mueller, W. M., Blackledge, J. P., and Libowitz, G. G. (Academic Press, New York and London, 1968), p. 627.Google Scholar
21Angus, J. C. and Gardner, N. C., “Process for the Catalytic Growth of Diamond from the Vapor Phase,” U.S. Patent 3 661526 (1972).Google Scholar