Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T10:38:41.504Z Has data issue: false hasContentIssue false

Nucleation of CVD-TiN on tungsten

Published online by Cambridge University Press:  03 March 2011

K. Glejb⊘l
Affiliation:
Laboratory of Applied Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
N.H. Pryds
Affiliation:
Laboratory of Applied Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
A.R. Thölén
Affiliation:
Laboratory of Applied Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
Get access

Abstract

Using Chemical Vapor Deposition (CVD), TiN was deposited on sharp tungsten needles. The reactant gases were TiCl4, N2, and H2. A Transmission Electron Microscopy (TEM) investigation revealed that the first nuclei of the CVD–TiN coating on tungsten did not consist of δ–TiN, but were a mixture of α–TiN and δ–TiN. These results were also verified with x-ray measurements. From these experimental results a possible mechanism for the initial growth of TiN on tungsten is suggested. It may be that the change in relative concentrations of the different titanium nitrides suggested as mechanism of the initial growth of CVD–TiN can be applied in general for all TiCl4/H2/N2/metal systems where the original substrate surface material partly or completely consists of a metal with catalytic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Molarius, J. M., Korhonen, A. S., and Ristolainen, E. O., J. Vac. Sci. Technol. A 3 (6), 2419 (1985).CrossRefGoogle Scholar
2Bushan, B. and Gupta, B. K., Handbook of Tribology (McGraw-Hill, Inc., New York, 1991).Google Scholar
3Jung, T. C., Bao, C. E., and Fang, M. H., Trans. Inst. Min. Metall. C 95, 63 (1986).Google Scholar
4Jung, T. C., Sheng, D. Y., and Fang, M. H., in Proc. 10th Int. Conf. on Chemical Vapour Deposition, edited by Cullen, G. W. (1987).Google Scholar
5Vuorinen, S. and Skogsmo, J., in Surface Modification Technologies, edited by Sudarshan, T. S. and Bhat, D. G. (The Metallurgical Society, Warrendale, PA, 1988), p. 143.Google Scholar
6Skogsmo, J., Henjered, A.,Nordén, H., and Stjernberg, K. G., Refractory and Hard Metais 6 (2), 84 (1987).Google Scholar
7Kato, A. and Tamari, N., J. Cryst. Growth 29, 55 (1975).Google Scholar
8Glejbøl, K., Hamawi, N. N., and Tholén, A. R., Micron and Microscopica Acta 22 (1/2), 127 (1991).Google Scholar
9Song, J. P., Hamawi, N. N., Glejbøl, K., Mørch, K. A., Thölén, A. R., and Christensen, L. N., Rev. Sci. Instrum (in press).Google Scholar
10Valli, J., J. Vac. Sci. Technol. A 4 (6), 3007 (1986).Google Scholar
11Bryant, W. A., J. Electrochem. Soc. 125 (9), 1534 (1978).CrossRefGoogle Scholar
12Roman, O. V., Kirilyuk, L. M., Dubrovskaya, G. N., Anikin, V. N., and Anikeyev, A. I., Powder Metall. Int. 13 (4), 192 (1981).Google Scholar
13Swanson, H. E. and Tatge, E., Natl. Bur. Stand. (U.S.), Circ. 539, 1, 28 (1953).Google Scholar
14Wong-Ng, W., McMurdie, H., Paretzkin, B., Hubbard, C., and Dragoo, A., Powder Diffraction 2, 200 (1987).Google Scholar
15Lengauer, W. and Ettmayer, P., J. Mater. Sci. Eng. 105/106, 257 (1988).Google Scholar
16Lobier, G. and Marcon, J. P., C. R. Seances Acad. Sci. (Paris) 268, 1132 (1969).Google Scholar
17CRC Handbook of Chemistry and Physics, edited by Weast, R. C., Astle, M. J., and Beyer, W. H. (CRC Press, Boca Raton, FL, 1983).Google Scholar