Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T23:24:04.284Z Has data issue: false hasContentIssue false

Nucleation and growth of silicon nitride nanoneedles using microwave plasma heating

Published online by Cambridge University Press:  31 January 2011

H. Cui
Affiliation:
Curriculum in Applied and Materials Science, University of North Carolina, Chapel Hill, North Carolina 25799
B. R. Stoner
Affiliation:
Curriculum in Applied and Materials Science, University of North Carolina, Chapel Hill, North Carolina 25799
Get access

Abstract

We report on needlelike silicon nitride nanowires grown on silicon using ammonia microwave plasma heating. Scanning electron microscope reveals that the nanoneedles are either straight, slightly bent, or kinked with sharp tips. Transmission electron microscope shows that the sizes of the nanowire tips are less than 5 nm and the structures are well crystallized. X-ray diffraction on the surface of the as-deposited structures indicates that both α-silicon nitride and β-silicon nitride exist. Catalyst particle splitting and merging explain observed structure derivation and bending. A vapor–liquid–solid model is employed to explain nucleation and growth mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Fan., S.S., Chapline., M.G., Franklin., N.R., Tombler., T.W., Cassell., A.M., and Dai., H.J., Science 283, 512 (1999).Google Scholar
3.Saito, Y., Uemura, S., and Hamaguchi, K., Jpn. J. Appl. Phys., Part 2 37, L346 (1998).CrossRefGoogle Scholar
4.Tans., S.J., Verschueren, A.R.M., and Dekker, C., Nature 393, 49 (1998).Google Scholar
5.Hafner., J.H., Cheung., C.L., and Lieber., C.M., Nature 398, 761 (1999).Google Scholar
6.Wilcox., W.R., Growth mechanisms and silicon nitride (M. Dekker, New York, 1982).Google Scholar
7.Han., W.Q., Fan., S.S., Li., Q.Q., Gu., B.L., Zhang., X.B., and Yu., D.P., Appl. Phys. Lett. 71, 2271 (1997).Google Scholar
8.Osendi., M.I. and Miranzo, P., in Cmmc 96—Proceedings of the First International Conference on Ceramic and Metal Matrix Composites, Pts 1 and 2; Vol. 127 (Trans Tech Publications, Clausthal Zellerfe, Switzerland, 1997), pp. 247254.Google Scholar
9.Chollon, G., Vogt, U., and Berroth, K., J. Mater. Sci. 33, 1529 (1998).CrossRefGoogle Scholar
10.Cao., Y.G., Ge., C.C., Zhou., Z.J., and Li., J.T., J. Mater. Res. 14, 876 (1999).CrossRefGoogle Scholar
11.Warner., T.E. and Fray., D.J., J. Mater. Sci. Lett. 19, 733 (2000).Google Scholar
12.Chen, Y., Guo., L.P., and Shaw., D.T., J. Cryst. Growth 210, 527 (2000).Google Scholar
13.Stoner., B.R., Ma, G.H.M., Wolter., S.D., and Glass., J.T., Phys. Rev. B: Condens. Matter 45, 11067 (1992).CrossRefGoogle Scholar
14.Cui, H., Zhou, O., and Stoner., B.R., J. Appl. Phys. 88, 6072 (2000).CrossRefGoogle Scholar
15.Wagner., R.S. and Ellis., W.C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar