Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T23:26:52.191Z Has data issue: false hasContentIssue false

Novel synthesis of AlN nanowires with controlled diameters

Published online by Cambridge University Press:  31 January 2011

Jun Liu
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
X. Zhang*
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
Yingjiu Zhang
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
Rongrui He
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
Jing Zhu
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
*
a) Address all correspondence to this author. e-mail: xzzhang@tsinghua.edu.cn
Get access

Abstract

A relatively low-cost, high-efficiency method is reported to synthesize AlN nanowires, using carbon nanotubes as templates. The AlN nanowires were fabricated at 1100 °C, for 60 min. The diameters of the product could be roughly controlled by the sizes of carbon nanotubes selected as starting materials. The AlN nanowires obtained were among the thinnest ever known. X-ray diffraction, selected-area diffraction, energy dispersive spectroscopy, and high-resolution transmission electron microscopy, etc. were employed to characterize the products, which were found to be single crystals with some defects. The axes of the nanowires are normal to {1010} crystal planes. A new synthesis mechanism is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ganham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2.Wilson, W.L., Szajowski, P.F., and Brus, L.E., Science 262, 1242 (1993).CrossRefGoogle Scholar
3.Alivisatos, A.P., Science 271, 933 (1996).CrossRefGoogle Scholar
4.Yakobson, B.I. and Smalley, R.E., Am. Sci. 85, 324 (1997).Google Scholar
5.Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).Google Scholar
6.Duan, X.F. and Lieber, C.M., J. Am. Chem. Soc. 122, 188 (2000).Google Scholar
7.Seager, T., Kohler-Redlich, P., and Ruühle, M., Adv. Mater. 12, 279 (2000).3.0.CO;2-1>CrossRefGoogle Scholar
8.Haber, J.A., Gibbons, P.C., and Buhro, W.E., Chem. Mater. 10, 4062 (1998).CrossRefGoogle Scholar
9.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
10.Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., and Dresselhaus, M.S., Science 285, 1127 (1999).Google Scholar
11.Han, W.Q., Fan, S.S., Li, Q.Q., and Hu, Y.D., Science 277, 1287 (1997).CrossRefGoogle Scholar
12.Dai, H.J., Wong, E.W., Liu, Y.Z., Fan, S.S., and Lieber, C.M., Nature 375, 769 (1995).Google Scholar
13.Satishkumar, B.C., Govindaraj, A., Vogl, E.M., Basumallick, L., and Rao, C.N.R., J. Mater. Res. 12, 604 (1997).CrossRefGoogle Scholar
14.Zhang, Y.J., Zhu, J., Zhang, Q., Yan, Y.J., Wang, N.L., and Zhang, X.Z., Chem. Phys. Lett. 317, 504 (2000).CrossRefGoogle Scholar
15.Han, W.Q., Fan, S.S., Lin, Q.Q., Gu, B.L., Zhang, X.B., and Yu, D.P., Appl. Phys. Lett. 71, 2271 (1997).CrossRefGoogle Scholar
16.Bradshaw, S.M. and Spicer, J.L., J. Am. Ceram. Soc. 82, 2293 (1999).Google Scholar
17.Fu, R.L., Zhou, H.P., Chen, L., and Wu, Y., J. Mater. Sci. 34, 3605 (1999).CrossRefGoogle Scholar
18.Moya, J.S., Iglesias, J.E., Limpo, J., Escrina, J.A., Makhonin, N.S., and Rodriguez, M.A., Acta. Mater. 45, 3089 (1997).CrossRefGoogle Scholar
19.Caceres, P.G., J. Am. Ceram. Soc. 77, 977 (1994).CrossRefGoogle Scholar
20.Sastry, S.M.L., Lederick, R.J., and Peng, T.C., J. Met. 40, 11 (1988).Google Scholar
21.Sheppard, L.M., Am. Ceram. Soc. Bull. 69, 1801 (1990).Google Scholar
22.Baba, K., Shohata, N., and Yonezaw, M., Appl. Phys. Lett. 54, 2309 (1989).CrossRefGoogle Scholar
23.Haber, J.A., Gibbons, P.C., and Buhro, W.E., Chem. Mater. 10, 4062 (1998).Google Scholar
24.Jiang, G.L., Zhuang, H.R., Zhang, J., and Ruan, M.L., Li, W.L., Wu, F.Y., and Zhang, B.L., J. Mater. Sci. 35, 471 (2000).Google Scholar
25.Vaidhyanathan, B., Agrawal, D.K., and Roy, R., J. Mater. Res. 15, (2000).Google Scholar
26.Ramesmh, P.D. and Rao, K.J., Adv. Mater. 7, 177 (1995).CrossRefGoogle Scholar
27.Caceres, P.G., J. Am. Ceram. Soc. 77, 977 (1994).CrossRefGoogle Scholar
28.Zhou, H.P., Chen, H., Liu, Y.C., and Wu, Y., J. Mater. Sci. 35, 471 (2000).CrossRefGoogle Scholar
29.Adjaottor, A.A. and Griffin, G.L., J. Am. Ceram. Soc. 75, 3209 (1992).Google Scholar
30.Cheng, H.M., Li, F., Sun, X., Brown, S.D.M., Pimenta, M.A., Marucci, A., Dresselhaus, G., and Dresselhaus, M.S., Chem. Phys. Lett. 289, 602 (1998).CrossRefGoogle Scholar
31.Zhu, J. and Fan, S.S., J. Mater. Res. 14, 1175 (1999).CrossRefGoogle Scholar
32.Drum, C.M. and Mitchell, J.M., Appl. Phys. Lett. 4, 164 (1964).Google Scholar
33.Zhou, H.P., Chen, H., Wu, Y., Miao, W.G., and Liu, X., J. Mater. Sci. 33, 4249 (1998).CrossRefGoogle Scholar
34.Kimura, I., Ichiya, K., Ishii, M., Hotta, N., and Kitamura, T., J. Mater. Sci. Lett. 8, 303 (1989).CrossRefGoogle Scholar
35.Bradshaw, S.M. and Spicer, J.L., J. Am. Ceram. Soc. 82, 2293 (1999).CrossRefGoogle Scholar
36.Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemis-try (Pergamon, Oxford, United Kingdom, 1989).Google Scholar