Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T14:40:31.424Z Has data issue: false hasContentIssue false

Nondestructive magneto-optical imaging analysis of superconducting (Bi, Pb)2Sr2Ca2Cu3Ox composites

Published online by Cambridge University Press:  31 January 2011

M. Turchinskaya
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
D. L. Kaiser
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
A. J. Shapiro
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
G. N. Riley Jr.
Affiliation:
American Superconductor Corporation, Two Technology Drive, Westborough, Massachusetts 01581
C. Christopherson
Affiliation:
American Superconductor Corporation, Two Technology Drive, Westborough, Massachusetts 01581
Get access

Abstract

The superconducting filaments in (Bi, Pb)2Sr2Ca2Cu3Ox/Ag composite tapes have been imaged directly through the outer silver sheath of an unpolished tape by means of a magneto-optical imaging technique. The images reveal the morphology and alignment of the uppermost layer of filaments located as much as 112 μm below the unpolished tape surface, the depths of these filaments, and the homogeneity of the magnetic flux distribution within these filaments. These results demonstrate that the magneto-optical technique is a valuable nondestructive tool for analyzing (Bi, Pb)2Sr2Ca2Cu3Ox composite tapes.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Riley, G. N. Jr., Parker, D. R., Christopherson, C. J., Miles, P. K., Pickett, J.J., Hughson, S.E., Schreiber, J.D., Polyanskii, A., Pashitski, A., and Larbalestier, D. C., Physica C 235–240, 3407 (1994).Google Scholar
2.Polyanskii, A. A., Pashitski, A. E., Gurevich, A., Larbalestier, D. C., Vlasko-Vlasov, V. K., and Nikitenko, V. I., in ICMC'94, Hawaii (World Scientific, Singapore, 1995, in press).Google Scholar
3.Pashitski, A. E., Polyanskii, A., Gurevich, A., Parrell, J.A., and Larbalestier, D. C., Physica C 246, 133 (1995).CrossRefGoogle Scholar
4.Pashitski, A. E., Polyanskii, A., Gurevich, A., Parrell, J.A., and Larbalestier, D. C., Appl. Phys. Lett. 67, 2720 (1995).Google Scholar
5.Welp, U., Gunter, D. O., Crabtree, G. W., Zhong, W., Balachan-dran, U., Haldar, P., Sokolowski, R. S., Vlasko-Vlasov, V. K., and Nikitenko, V. I., Nature (London) 376, 44 (1995).CrossRefGoogle Scholar
6.Welp, U., Gunter, D. O., Crabtree, G. W., Luo, J. S., Maroni, V. A., Carter, W. L., Vlasko-Vlasov, V. K., and Nikitenko, V. I., Appl. Phys. Lett. 66, 1270 (1995).CrossRefGoogle Scholar
7.Dorosinskii, L. A., Indenbom, M. V., Nikitenko, V. I., Ossip'yan, Yu. A., Polyanskii, A. A., and Vlasko-Vlasov, V. K., Physica C 203, 149 (1992).Google Scholar
8.Turchinskaya, M., Kaiser, D. L., Gayle, F. W., Shapiro, A. J., Roytburd, A., Vlasko-Vlasov, V., Polyanskii, A., and Nikitenko, V., Physica C 216, 205 (1993).Google Scholar
9.Vlasko-Vlasov, V. K., Dorosinskii, L. A., Polyanskii, A. A., Nikitenko, V. I., Welp, U., Veal, B. W., and Crabtree, G. W., Phys. Rev. Lett. 72, 3246 (1994).Google Scholar
10.Turchinskaya, M., Kaiser, D. L., Gayle, F.W., Shapiro, A. J., Roytburd, A., Dorosinskii, L. A., Nikitenko, V. I., Polyanskii, A. A., and Vlasko-Vlasov, V. K., Physica C 221, 62 (1994).Google Scholar
11.Vlasko-Vlasov, V. K., Goncharov, V. N., Nikitenko, V. I., Polyanskii, A. A., Voloshin, I.F., Fisher, L. M., Aleshina, N. M., and Poluschenko, O. A., Physica C 222, 367 (1994).CrossRefGoogle Scholar
12.Turchinskaya, M., Kaiser, D. L., Shapiro, A. J., and Schwartz, J., Physica C 246, 375 (1995).CrossRefGoogle Scholar