Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T23:48:22.676Z Has data issue: false hasContentIssue false

New perspective in degradation mechanism of SrTiO3:Pr,Al,Ga phosphors

Published online by Cambridge University Press:  03 March 2011

Jin Young Kim*
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yusung-gu, Daejeon 305-701, Korea
Yong Chan You
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yusung-gu, Daejeon 305-701, Korea
Jong Hyuk Kang
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yusung-gu, Daejeon 305-701, Korea
Duk Young Jeon
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yusung-gu, Daejeon 305-701, Korea
Jörg Weber
Affiliation:
Institute for Applied Physics-Semiconductor Physics, TUI-Dresden, Dresden D-01062, Germany
*
a)Address all correspondence to this author. e-mail: tg2som@naver.com
Get access

Abstract

Under prolonged electron-beam exposure, perovskite-structured SrTiO3:Pr,Al,Ga (STO) phosphor can be easily reduced due to oxygen loss. In particular, it is well known that dissociative H2O molecules are well adsorbed on reduced STO surfaces. The hydroxyl species produced by such dissociative adsorption of H2O strongly decompose organic compounds chemisorbed on the surface from vacuum ambient used in display devices into carbon species due to the photocatalytic properties of STO. Consequently, it is very likely that this mechanism attributes to the larger amounts of carbon adsorption by electron-stimulated chemical reactions on the STO phosphor surface than other phosphors.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ozawa, L.Application of Cathodoluminescence to Display Devices (Kodansha, Tokyo, Japan, 1994).Google Scholar
2.Justel, T. andNikol, H.: Optimization of luminescent materials for plasma display panels. Adv. Mater 12, 527 (2000).Google Scholar
3.Klaassen, D.B.M. andde Leeuw, D.M.: Degradation of phosphors under cathode-ray excitation. J. Lumin 37, 21 (1987).CrossRefGoogle Scholar
4.Shionoya, S. andYen, W.M.Phosphor Handbook (CRC Press, Boca Raton, FL, 1999).Google Scholar
5.Swart, H.C., Trottier, T.A., Sebastian, J.S., Jones, S.L. andHolloway, P.H.: Degradation of zinc sulfide phosphors under electron bombardment. J. Vac. Sci. Technol. A 14, 1697 (1996).Google Scholar
6.Itoh, S., Kimizuka, T. andTonegawa, T.: Degradation mechanism for low voltage cathodoluminescence of sulfide phosphors. J. Electrochem. Soc. 136, 1819 (1989).CrossRefGoogle Scholar
7.Itoh, S., Yokoyama, M. andMorimoto, K.: Poisonous gas effects on the emission of oxide-coated cathodes. J. Vac. Sci. Technol. A 5, 3430 (1987).Google Scholar
8.Yokoyama, M. andYang, S.: Red SrTiO3:Pr,Al phosphor as potential field emission display material. J. Vac. Sci. Technol. A 18, 2472 (2000).CrossRefGoogle Scholar
9.Itoh, S., Toki, H., Tamura, K. andKataoka, F.: A new red-emitting phosphor SrTiO3:Pr3+, for low-voltage electron excitation. Jpn. J. Appl. Phys. Part I 38, 6387 (1999).CrossRefGoogle Scholar
10.Okamoto, S., Kobayashi, H. andYamamoto, H.: Enhancement of characteristic red emission from SrTiO3:Pr3+ by Al addition. J. Appl. Phys. 86, 5594 (1999).Google Scholar
11.Kiyoshi, Tamura and Hitoshi, Toki: Fluorescent Material and Display Tube. Japanese Patent No.10-273658 (1998).Google Scholar
12.Kim, J.Y., You, Y.C., Jeon, D.Y., Yu, I. andYang, H.-G.: A study on the degradation of cathodoluminescence of SrTiO3:Pr,Al,Ga phosphors tailored for low voltage display applications. J. Electrochem. Soc. 149 H44 (2002).Google Scholar
13.You, Y.C., Kim, J.Y., Jeon, D.Y., Park, K.C., Lee, S.H., and Yu, I.: XPS observations of deterioration of SrTiO3: Pr, Al, GA phosphor by low voltage electron irradiation, in The 2nd International Display Manufacturing Conference & Exhibition, Seoul, Korea, (2002), p. 281.Google Scholar
14.Seager, C.H., Tallant, D.R. andWarren, W.L.: Cathodoluminescence, reflectivity changes, and accumulation of graphitic carbon during electron beam aging of phosphors. J. Appl. Phys. 82, 4515 (1997).Google Scholar
15.Nagarkar, P.V., Searson, P.C. andGealy, F.D.: Effect of surface treatment on SrTiO3: An x-ray photoelectron spectroscopic study. J. Appl. Phys. 69, 459 (1991).CrossRefGoogle Scholar
16.Sayers, C.N. andArmstrong, N.R.: X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: Surface compositional changes of the TiO2 electrode during photoelectrolysis. Surf. Sci. 77, 301 (1978).Google Scholar
17.Knotek, M.L.: Characterization of hydrogen species on metal oxide surfaces by electron-stimulated desorption: TiO2 and SrTiO3. Surf. Sci. 101, 334 (1980).CrossRefGoogle Scholar
18.Wang, L-Q., Ferris, K.F. andHerman, G.S.: Interactions of H2O with SrTiO3 (100) surfaces. J. Vac. Sci. Technol. A 20, 239 (2002).Google Scholar
19.Wrington, M.S., Ellis, A.B., Wolcznski, P.T., Morse, D.L., Abrahamson, H.B. andGin, D.S.: Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 98, 2774 (1976).Google Scholar
20.Cox, P.A., Egdell, R.G. andNaylor, P.D.: HREELS studies of adsorbates on polar solids: Water on SrTiO3 (100). J. Electron. Spectrosc. Relat. Phenom 29, 247 (1983).Google Scholar
21.Henrich, V.E., Dresselhaus, G. andZeiger, H.J.: Chemisorbed phases of H2O on TiO2 and SrTiO3. Solid State Commun. 24, 623 (1977).CrossRefGoogle Scholar
22.Webb, C. andLichtensteiger, M.: UPS/XPS study of reactive and non-reactive SrTiO3 (100) surfaces: Adsorption of H2O. Surf. Sci. 107 L345 (1981).CrossRefGoogle Scholar
23.Ferrer, S. andSomorjai, G.A.: Isotope exchange studies of the oxidation and reduction of SrTiO3 single crystal surfaces by water and hydrogen. Surf. Sci. 97 L304 (1980).CrossRefGoogle Scholar
24.Lo, W.J. andSomorjai, G.A.: Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3 (111) crystal face: Low-energy-electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies. Phys. Rev. B 17, 4942 (1978).Google Scholar
25.Schwoebel, P.R., Pearson, E.M., Lau, K-H., Lowe, D.H. andSanjuro, A.: Lifetime extension of cathodoluminescent P-1 phosphor. Electrochem. Solid-State Lett 1, 102 (1998).Google Scholar
26.Fujishima, A. andHonda, K.: Electrochemical photocatalysis of water at a semiconductor electrode. Nature 238, 37 (1972).Google Scholar
27.Hoffmann, M.R., Martin, S.T., Choi, W. andBahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).Google Scholar
28.Heller, A.: Chemistry and applications of photocatalytic oxidation of thin organic films. Acc. Chem. Res. 28, 503 (1995).Google Scholar
29.Ohko, Y., Hashimoto, K. andFujishima, A.: Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J. Phys. Chem. A 101, 8057 (1997).Google Scholar
30.Mills, A. andHunte, S.L.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A: Chem 108, 1 (1997).Google Scholar
31.Marroides, J.G., Kafalas, J.A. andKolisar, D.F.: Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241 (1976).CrossRefGoogle Scholar
32.Wrighton, M.S., Wolczanski, P.T. andEllis, A.B.: Photoelectrolysis of water by irradiation of platinized n-type semiconducting metal oxide. J. Solid State Chem. 22, 17 (1977).Google Scholar
33.Miyauchi, M., Nakajima, A., Fujishima, A., Hashimoto, K. andWatanabe, T.: Photoinduced surface reactions on TiO2 and SrTiO3 films: Photocatalytic oxidation and photoinduced hydrophilicity. Chem. Mater. 12, 3 (2000).Google Scholar
34.Mens, A.J.M. andGijzeman, O.L.J.: AES study of electron beam induced damage on TiO2 surfaces. Appl. Surf. Sci. 99, 133 (1996).Google Scholar