Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T12:37:53.306Z Has data issue: false hasContentIssue false

A new insight on reversible deformation and incipient plasticity during nanoindentation test in MgO

Published online by Cambridge University Press:  31 January 2011

Alex Montagne*
Affiliation:
Laboratoire de Physique des Matériaux, SP2MI, 86962, Chasseneuil Futuroscope Cedex, France
Christophe Tromas
Affiliation:
Laboratoire de Physique des Matériaux, SP2MI, 86962, Chasseneuil Futuroscope Cedex, France
Valérie Audurier
Affiliation:
Laboratoire de Physique des Matériaux, SP2MI, 86962, Chasseneuil Futuroscope Cedex, France
Jacques Woirgard
Affiliation:
Laboratoire de Physique des Matériaux, SP2MI, 86962, Chasseneuil Futuroscope Cedex, France
*
a) Address all correspondence to this author. e-mail: christophe.tromas@univ-poitiers.fr
Get access

Abstract

In this study, nucleation of dislocations in magnesium oxide (MgO) during nanoindentation with a spherical indenter is investigated. For flat and defect-free surfaces prepared by chemo/mechanical polishing, reversible load–displacement curves have been obtained for load as high as 300 mN, whereas on a cleaved MgO surface, pop-in and plastic deformation occur at 10 mN with the same indenter. Furthermore, these reversible curves deviate from the Hertz contact theory. Indented areas have then been characterized by atomic force microscopy and nanoetching. In some cases, few slip lines are observed for reversible indentation tests. However, the slip lines position indicate that the nucleation process of the corresponding dislocations is different from that involved during a pop-in phenomenon.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fischer-Cripps, A.C.: Introduction to Contact Mechanics (Springer, New York, 2000).Google Scholar
2.Nibur, K.A. and Bahr, D.F.: Identifying slip systems around indentations in FCC metals. Scr. Mater. 49, 1055 (2003).CrossRefGoogle Scholar
3.Tromas, C., Gaillard, Y., and Woirgard, J.: Nucleation of dislocations during nanoindentation in MgO. Philos. Mag. 86, 5595 (2006).CrossRefGoogle Scholar
4.Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).CrossRefGoogle Scholar
5.Page, T.F., Oliver, W.C., and McHargue, C.J.: The deformation behavior of ceramic crystals subjected to very low load (nano) indentations. J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
6.Minor, A.M., Lilleodden, E.T., Stach, E.A., and Morris, J.W.: Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19, 176 (2004).CrossRefGoogle Scholar
7.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P., and Wyrobek, J.T.: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).CrossRefGoogle Scholar
8.Syed Asif, S.A. and Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).CrossRefGoogle Scholar
9.Chiu, Y.L. and Ngan, A.H.W.: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).CrossRefGoogle Scholar
10.Kramer, D.E., Yoder, K.B., and Gerberich, W.W.: Surface constrained plasticity: Oxide rupture and the yield point process. Philos. Mag. 81, 2033 (2001).CrossRefGoogle Scholar
11.Gerberich, W.W., Venkataraman, S.K., Huang, H., Harvey, S.E., and Kohlstedt, D.L.: The injection of plasticity by millinewtons contacts. Acta Metall. Mater. 43, 1569 (1994).CrossRefGoogle Scholar
12. CKelchner, L., Plimpton, S.J., and Hamilton, J.C.: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).CrossRefGoogle Scholar
13.Michalske, T.A. and Houston, J.E.: Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46, 391 (1997).CrossRefGoogle Scholar
14.Li, J.: The mechanics and physics of defect nucleation. MRS Bull. 32, 151 (2007).CrossRefGoogle Scholar
15.Van Vliet, K.J., Li, J., Zhu, T., Yip, S., and Suresh, S.: Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67, 104105 (2003).CrossRefGoogle Scholar
16.Knap, J. and Ortiz, M.: Effect of indenter-radius size on Au(001) nanoindentation. Phys. Rev. Lett. 90, 226102 (2003).CrossRefGoogle ScholarPubMed
17.Navarro, V., Rodriguez de la Fuente, O., Mascaraque, A., and Rojo, J.M.: Uncommon dislocation processes at the incipient plasticity of stepped gold surfaces. Phys. Rev. Lett. 100, 105504 (2008).CrossRefGoogle ScholarPubMed
18.Minor, A.M., Syed Asif, S.A., Shan, Z., Stach, E.A., Cyrankowski, E., Wyrobek, T.J., and Warren, O.L.: A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697 (2006).CrossRefGoogle ScholarPubMed
19.Gaillard, Y., Tromas, C., and Woirgard, J.: Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching. Acta Mater. 51, 1059 (2002).CrossRefGoogle Scholar
20.Keh, A.S.: Dislocations in indented magnesium oxide crystals. J. Appl. Phys. 31, 1538 (1960).CrossRefGoogle Scholar
21.Tromas, C., Girard, J.C., and Woirgard, J.: Study by atomic force microscopy of elementary deformation mechanisms involved in low-load indentations in MgO crystals. Philos. Mag. A 80, 2325 (2000).CrossRefGoogle Scholar
22.Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J., and Baro, A.M.: WSXM: A software for scanning-probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).CrossRefGoogle Scholar
23.Tromas, C., Gaillard, Y., and Woirgard, J.: Nucleation of dislocations during nanoindentation in MgO. Philos. Mag. 86, 5595 (2006).CrossRefGoogle Scholar
24.Bahr, D.F., Kramer, D.E., and Gerberich, W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
25.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985), p. 93.CrossRefGoogle Scholar
26.Sinogeikin, S.V. and Bass, J.D.: Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Phys. Earth Planet Inter. 120, 43 (2000).CrossRefGoogle Scholar
27.Zhao, J.Z., Lu, L.Y., Chen, X.R., and Bai, Y.L.: First-principles calculations for elastic properties of the rocksalt structure MgO. Phys. Biol. 387, 245 (2007).CrossRefGoogle Scholar
28.Woirgard, J. and Dargenton, J.C.: An alternative method for penetration depth determination in nanoindentation measurements. J. Mater. Res. 12, 2455 (1997).CrossRefGoogle Scholar
29.Hanson, M.T. and Johnson, T.: The elastic field for spherical hertzian contact of isotropic bodies revisited: Some alternative expressions. J. Tribology 115, 327 (1993).CrossRefGoogle Scholar
30.Gaillard, Y., Tromas, C., and Woirgard, J.: Quantitative analysis of dislocation pile-ups nucleated during nanoindentation in MgO. Acta Mater. 54, 1409 (2006).CrossRefGoogle Scholar