Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T21:58:15.414Z Has data issue: false hasContentIssue false

New chemical solutions for the etching of (011) oriented V-grooves in InP(001) for CSBH laser diodes

Published online by Cambridge University Press:  31 January 2011

D. T. C. Huo
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M. F. Van
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. D. Wynn
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We have developed two new etchant systems by adding H2O2 and HBr into the conventional HCI–H3PO4 etchant for the fabrication of InP-based channeled substrate heterostructure (CSBH) lasers. These etchants do not erode photoresists and they provide high quality etched side walls. The etch factors for the new etchant systems based on HBr and H2O7 are 17% and 12% higher than that of the: conventional 5HCI–H3PO4 etchant, respectively. These high etch factors give a narrow V-groove in InP and they lead to a lower magnitude and a better control of the threshold current of CSBH lasers.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ishikawa, H., Imai, H., Tanahashi, T., Nishitani, Y., and Takusagawa, M., Electron. Lett. 17, 465 (1981).CrossRefGoogle Scholar
2Devlin, W. J., Walling, R. H., Fiddyment, P. J., Hobbs, R. E., Murrell, D., Spillett, R.E., and Steventon, A.G., Electron. Lett. 17, 652 (1981).CrossRefGoogle Scholar
3Imanaka, K., Horikawa, H., Matoba, A., Kawai, Y., and Sakuta, M., Appl. Phys. Lett. 45, 282 (1984).CrossRefGoogle Scholar
4Huo, D. T. C., Wynn, J. D., Napholtz, S. G., Lenzo, F. R., and Wilt, D. P., J. Electrochem. Soc. 134, 2850 (1987).Google Scholar
5Huo, D.T.C., Wynn, J.D., Napholtz, S.G., and Wilt, D.P., J. Electrochem. Soc. 135, 1231 (1988).CrossRefGoogle Scholar
6Huo, D.T.C., Wynn, J.D., Napholtz, S.G., and Wilt, D.P., J. Electrochem. Soc. (to be published).Google Scholar
7Ishikawa, H., Imai, H., Tanahashi, T., Hori, K. I., and Takahei, K., IEEE J. Quantum Electron. QE-18, 1704 (1982).CrossRefGoogle Scholar
8Coldren, L. A., Furuya, K., and Miller, B.I., J. Electrochem. Soc. 130 1918 (1983).Google Scholar
9Oomura, E., Higuchi, H., Sakakibara, Y., Hiraro, R., Namizaki, H., Susaki, W., Ikeda, K., and Fujikawa, K., IEEE J. Quantum Electron. QE-20, 866 (1984).CrossRefGoogle Scholar
10Sakakibara, Y., Higuchi, H., Oomura, E., Nakajima, Y., Yamamoto, Y., Goto, K., Namizaki, H., Ikeda, K., and Susaki, W., J. Light. Tech. LT-3 978 (1985).CrossRefGoogle Scholar
11Huo, D.T.C., Yan, F.M., Wynn, J.D., and Wilt, D.P., J. Electrochem. Soc. (to be published).Google Scholar
12Tuck, B. and Baker, A. J., J. Mater. Sci. 8, 1559 (1973).Google Scholar
13Huo, D.T.C., Yan, F.M., Wynn, J.D., and Wilt, D.P., J. Electrochem. Soc. (to be published).Google Scholar
14Huo, D.T.C., Yan, F.M., Wynn, J.D., and Wilt, D.P., J. Electrochem. Soc. (to be published).Google Scholar