Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:53:11.777Z Has data issue: false hasContentIssue false

Nanoscale craters in poly(methyl methacrylate) formed by exposure to condensing solvent vapor

Published online by Cambridge University Press:  31 January 2011

C.M. Bates
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
F. Stevens
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
S.C. Langford
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
J.T. Dickinson*
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
*
a)Address all correspondence to this author. e-mail: jtd@wsu.edu
Get access

Abstract

We report atomic force microscope observations of small pits formed on thin poly(methyl methacrylate) films after exposure to formic acid vapor, which condenses to form small drops on the surface and then evaporates. This procedure produces large numbers of small pits, 50–5000 nm in diameter, with aspect ratios (depth-to-diameter) as high as 0.5. About 25% of the volume removed from high-aspect-ratio pits has been transported to form a raised ring around the rim of the pit. We attribute the remaining 75% of the volume loss to densification of the surrounding polymer. Nanoindentation measurements show that material inside the pits is harder and stiffer than material outside the pits, consistent with densification. The effects of solvent concentration, exposure time, and exposure to ammonia vapor are described. Similar treatments with volatile solvents have potential applications in large-scale surface patterning, submicron hole formation, and controlled alteration of surface properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wu, M.C.: Micromachining for optical and optoelectronic systems. Proc. IEEE 85, 1833 1997CrossRefGoogle Scholar
2Denkov, N.D., Velev, O.D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, H.Nagayama, K.: Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8, 3183 1992CrossRefGoogle Scholar
3Bediwi, A.B. El, Kulnis, W.J., Luo, Y., Woodland, D.Unertl, W.N.: Distributions of latex particles deposited for water suspensions in Hollow and Solid Spheres and Microspheres: Science and Technology Associated With Their Fabrication and Application, edited by D.L. Wilcox, Sr., M. Berg, T. Bernat, D. Kellerman, and J.K. Cochran, Jr. (Mater Res. Soc. Symp Proc. 372, Pittsburgh, PA, 1995), p. 277CrossRefGoogle Scholar
4Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R.Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827 1997CrossRefGoogle Scholar
5Laden, P., editor: Chemistry and Technology of Water Based Ink Blackie Academic London 1997Google Scholar
6Hanna, G.Barnes, W.J.P.: Adhesion and detachment of the toe pads of tree frogs. J. Exp. Biol. 155, 103 1991CrossRefGoogle Scholar
7Bonaccurso, E., Butt, H-J., Hankeln, B., Niesenhaus, B.Graf, K.: Fabrication of microvessels and microlenses from polymers by solvent droplets. Appl. Phys. Lett. 86, 124101 2005CrossRefGoogle Scholar
8Li, G., Butt, H-J.Graf, K.: Microstructures by solvent drop evaporation on polymer surfaces: Dependence on molar mass. Langmuir 22, 11395 2006CrossRefGoogle ScholarPubMed
9Li, G., Höhn, N.Graf, K.: Microtopologies in polymer surfaces by solvent drop in contact and noncontact mode. Appl. Phys. Lett. 89, 241920 2006CrossRefGoogle Scholar
10Karabasheva, S., Baluschev, S.Graf, K.: Microstructurs on soluble polymer surface via drop deposition of solvent mixtures. Appl. Phys. Lett. 89, 031110 2006CrossRefGoogle Scholar
11Family, F.Meakin, P.: Kinetics of droplet growth processes: Simulations, theory, and experiments. Phys. Rev. A: At., Mol., Opt. Phys. 40, 3836 1989CrossRefGoogle Scholar
12Briscoe, B.J.Galvin, K.P.: An experimental study of the growth of breath figures. Colloids Surf. 56, 263 1991CrossRefGoogle Scholar
13Meakin, P.: Droplet deposition growth and coalescence. Rep. Prog. Phys. 55, 157 1992CrossRefGoogle Scholar
14Williams, R.Blanc, J.: Inhibition of water condensation by a soluble salt nucleus. J. Chem. Phys. 74, 4675 1981CrossRefGoogle Scholar
15Leach, R.N., Stevens, F., Langford, S.C.Dickinson, J.T.: Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir 22, 8864 2006CrossRefGoogle Scholar
16Adamson, A.W.Gast, A.P.Physical Chemistry of Surfaces 6th ed.Wiley New York 1997Google Scholar
17Sperling, L.H.Physical Polymer Science 3rd ed.John Wiley New York 2001Google Scholar
18Leach, R.N., Stevens, F., Seiler, C., Langford, S.C.Dickinson, J.T.: Nanometer-scale solvent-assisted modification of polymer surfaces using the atomic force microscope. Langmuir 19, 10225 2003CrossRefGoogle Scholar
19Carre, A., Gamet, D., Schultz, J.Schreiber, H.P.: Nonuniformity in thin polymer films. J. Macromol. Sci., Chem. A23, 1 1986CrossRefGoogle Scholar
20Fu, Y-J., Hu, C-C., Lee, K-R., Tsai, H-A., Ruaan, R-C.Lai, J-Y.: The correlation between free volume and gas separation properties in high molecular weight poly(methyl methacrylate) membranes. Eur. Polym. J. 43, 959 2007CrossRefGoogle Scholar
21Richardson, H., Carelli, C., Keddie, J.L.Sferrazza, M.: Structural relaxation of spin-case polymer thin films as a possible factor in dewetting. Eur. Phys. J., E: Soft Matter 12, 437 2003CrossRefGoogle Scholar
22Israelachvili, J.: Intermolecular and Surface Forces Academic Press New York 1992Google Scholar
23Moore, W.J.: Physical Chemistry Prentice Hall Englewood Cliffs, NJ 1962Google Scholar
24Checco, A., Guenoun, P.Daillant, J.: Nonlinear dependence of contact angle of nanodroplets on contact line curvature. Phys. Rev. Lett. 91, 186101 2003CrossRefGoogle ScholarPubMed
25Surface tension of aqueous mixtures, in CRC Handbook Chemistry and Physics 85th ed., edited by D.R. Lide CRC Press Boca Raton, FL 2004 6Google Scholar
26Briscoe, B.J.Galvin, K.P.: The evolution of a 2D constrained growth system of droplets: Breath figures. J. Phys. D: Appl. Phys. 23, 422 1990CrossRefGoogle Scholar
27Tanemura, M.: On random complete packing by discs. Ann. Inst. Statist. Math., B 31, 351 1979CrossRefGoogle Scholar