Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:35:59.231Z Has data issue: false hasContentIssue false

N, S doped carbon dots—Plasmonic Au nanocomposites for visible-light photocatalytic reduction of nitroaromatics

Published online by Cambridge University Press:  26 September 2018

Madhusudan Kr. Mahto
Affiliation:
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
Dipanjan Samanta
Affiliation:
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
Suraj Konar
Affiliation:
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
Himani Kalita
Affiliation:
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
Amita Pathak*
Affiliation:
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
*
a)Address all correspondence to this author. e-mail: ami@chem.iitkgp.ernet.in
Get access

Abstract

Herein, we report N, S co-doped carbon dots (NS CDs) as stabilizing and reducing agents for the synthesis of N, S doped carbon dots-Au nanocomposites (NS CDs-Au NCs) through the solution method and explore the catalytic property of the synthesized nanocomposites in the reduction of nitro aromatic compounds (NACs) such as 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), and nitrobenzene (NB). The appraisal of the catalytic efficacy of the NS CDs-Au NCs was premised on real time monitoring of the reduction of NACs using UV-Visible absorption spectroscopy. The apparent rate constants (kapp) of reduction were found to follow the pseudo-first-order kinetics having values of 1.37 × 10−1, 8.9 × 10−2, and 5.35 × 10−2 s−1 for 4-NP, 4-NA, and NB, respectively. The apparent rate constant (1.37 × 10−1 s−1) observed for the reduction of 4-NP by NaBH4 using NS CDs-Au NCs has been found to be one of the highest values reported in the literature so far thereby validating their excellent efficacy as a catalyst.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, A.J., Traulsen, C.H.H., and Cornelissen, J.J.L.M.: Nitroarene reduction by a virus protein cage based nanoreactor. ACS Catal. 6, 3084 (2016).CrossRefGoogle Scholar
Chen, Y., Gu, X., Nie, C.G., Jiang, Z.Y., Xie, Z.X., and Lin, C.J.: Shape controlled growth of gold nanoparticles by a solution synthesis. Chem. Commun., 4181 (2005).CrossRefGoogle ScholarPubMed
Kundu, S., Lau, S., and Liang, H.: Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms. J. Phys. Chem. C 113, 5150 (2009).CrossRefGoogle Scholar
Dimitratos, N., Villa, A., Prati, L., Hammond, C., Chan-Thaw, C.E., Cookson, J. and Bishop, P.T.: Effect of the preparation method of supported au nanoparticles in the liquid phase oxidation of glycerol. Appl. Catal. a-Gen. 514, 267 (2016).CrossRefGoogle Scholar
Liu, Z.Q., Xie, S.S., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, C.Y., Liu, W., Li, Y.B., Zou, X.P., and Wang, G.: Synthesis of alpha-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate. J. Mater. Res. 16, 683 (2001).CrossRefGoogle Scholar
Liu, Y.K., Huang, Q., Jiang, G.H., Liu, D.P., and Yu, W.J.: Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. J. Mater. Res. 32, 3605 (2017).CrossRefGoogle Scholar
Edwards, J., Landon, P., Carley, A.F., and Hutchings, G.J.: Nanocrystalline gold and gold-palladium as effective catalysts for selective oxidation. J. Mater. Res. 22, 831 (2007).CrossRefGoogle Scholar
Yang, Y.W., Luo, S., Guo, S.L., Chao, Y.X., Yang, H.W., and Li, Y.X.: Synthesis of Au nanoparticles supported on mesoporous N-doped carbon and its high catalytic activity towards hydrogenation of 4-nitrophenol to 4-aminophenol. Int. J. Hydrogen Energy 42, 29236 (2017).CrossRefGoogle Scholar
Beija, M., Palleau, E., Sistach, S., Zhao, X.G., Ressier, L., Mingotaud, C., Destarac, M., and Marty, J.D.: Control of the catalytic properties and directed assembly on surfaces of MADIX/RAFT polymer-coated gold nanoparticles by tuning polymeric shell charge. J. Mater. Chem. 20, 9433 (2010).CrossRefGoogle Scholar
Cheng, H., Su, C.Y., Tan, Z.Y., Tai, S.Z., and Liu, Z.Q.: Interacting ZnCo2O4 and Au nanodots on carbon nanotubes as highly efficient water oxidation electrocatalyst. J. Power Sources 357, 1 (2017).CrossRefGoogle Scholar
Wang, Z.L., Liu, H., Chen, L., Chou, L.J., and Wang, X.L.: Green and facile synthesis of carbon nanotube supported Pd nanoparticle catalysts and their application in the hydrogenation of nitrobenzene. J. Mater. Res. 28, 1326 (2013).CrossRefGoogle Scholar
Li, Y., Fan, X.B., Qi, J.J., Ji, J.Y., Wang, S.L., Zhang, G.L., and Zhang, F.B.: Gold nanoparticles-graphene hybrids as active catalysts for Suzuki reaction. Mater. Res. Bull. 45, 1413 (2010).CrossRefGoogle Scholar
Li, X., Yu, J.G., Wageh, S., Al-Ghamdi, A.A., and Xie, J.: Graphene in photocatalysis: A review. Small 12, 6640 (2016).CrossRefGoogle ScholarPubMed
Wang, C., Lin, X.J., Ge, Y.Z., Shah, Z.H., Lu, R.W., and Zhang, S.F.: Silica-supported ultra small gold nanoparticles as nanoreactors for the etherification of silanes. RSC Adv. 6, 102102 (2016).CrossRefGoogle Scholar
Pandey, P.C., Shukla, S., and Pandey, Y.: Mesoporous silica beads encapsulated with functionalized palladium nanocrystallites: Novel catalyst for selective hydrogen evolution. J. Mater. Res. 32, 3574 (2017).CrossRefGoogle Scholar
Wang, L.K., Tang, Z.H., Yan, W., Yang, H.Y., Wang, Q.N., and Chen, S.W.: Porous carbon-supported gold nanoparticles for oxygen reduction reaction: Effects of nanoparticle size. ACS Appl. Mater. Interfaces 8, 20635 (2016).CrossRefGoogle ScholarPubMed
Xu, X.J., Li, H., Xie, H.T., Ma, Y.H., Chen, T.X., and Wang, J.D.: Zinc cobalt bimetallic nanoparticles embedded in porous nitrogen-doped carbon frameworks for the reduction of nitro compounds. J. Mater. Res. 32, 1777 (2017).CrossRefGoogle Scholar
Saipanya, S., Lapanantnoppakhun, S., and Sarakonsri, T.: Electrochemical deposition of platinum and palladium on gold nanoparticles loaded carbon nanotube support for oxidation reactions in fuel cell. J. Chem-Ny. 2014, 6 (2014).Google Scholar
Yang, Z., Li, Z.H., Xu, M.H., Ma, Y.J., Zhang, J., Su, Y.J., Gao, F., Wei, H., and Zhang, L.Y.: Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5, 247 (2013).CrossRefGoogle Scholar
Zhao, F.J., Qian, J.L., Quan, F.F., Wu, C.X., Zheng, Y., and Zhou, L.: Aconitic acid derived carbon dots as recyclable “on-off-on” fluorescent nanoprobes for sensitive detection of mercury(II) ions, cysteine and cellular imaging. RSC Adv. 7, 44178 (2017).CrossRefGoogle Scholar
Araujo, T.C., Oliveira, H.D., Teles, J.J.S., Fabris, J.D., Oliveira, L.C.A., and de Mesquita, J.P.: Hybrid heterostructures based on hematite and highly hydrophilic carbon dots with photocatalytic activity. Appl. Catal., B 182, 204 (2016).CrossRefGoogle Scholar
Martins, N.C.T., Angelo, J., Girao, A.V., Trindade, T., Andrade, L., and Mendes, A.: N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl. Catal., B 193, 67 (2016).CrossRefGoogle Scholar
Sergievskaya, A.P., Tatarchuk, V.V., Makotchenko, E.V., and Mironov, I.V.: Formation of gold nanoparticles during the reduction of HAuBr4 in reverse micelles of oxyethylated surfactant: Influence of gold precursor on the growth kinetics and properties of the particles. J. Mater. Res. 30, 1925 (2015).CrossRefGoogle Scholar
Nie, H., Li, M.J., Li, Q.S., Liang, S.J., Tan, Y.Y., Sheng, L., Shi, W., and Zhang, S.X.A.: Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mater. 26, 3104 (2014).CrossRefGoogle Scholar
Liu, T., Cui, Z.W., Zhou, J., Wang, Y., and Zou, Z.G.: Synthesis of pyridinic-rich N, S co-doped carbon quantum dots as effective enzyme mimics. Nanoscale Res. Lett. 12 (2017).CrossRefGoogle ScholarPubMed
Wang, Y., Kalytchuk, S., Zhang, Y., Shi, H.C., Kershaw, S.V., and Rogach, A.L.: Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. J. Phys. Chem. Lett. 5, 1412 (2014).CrossRefGoogle Scholar
Riaz, A., Qi, H.J.Y., Fang, Y., Xu, J.F., Zhou, C.M., Jin, Z.G., Hong, Z.L., Zhi, M.J., and Liu, Y.: Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios. J. Mater. Res. 31, 3036 (2016).CrossRefGoogle Scholar
Agnihotri, S., Mukherji, S., and Mukherji, S.: Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4, 3974 (2014).CrossRefGoogle Scholar
Polte, J.: Fundamental growth principles of colloidal metal nanoparticles—A new perspective. CrystEngComm 17, 6809 (2015).CrossRefGoogle Scholar
Gui, R.J., Liu, X.F., Jin, H., Wang, Z.H., Zhang, F.F., Xia, J.F., Yang, M., Bi, S., and Xia, Y.Z.: N, S co-doped graphene quantum dots from a single source precursor used for photodynamic cancer therapy under two-photon excitation (Retraction of 10.1039/C4CC09280E, 2015). Chem. Commun. 51, 10066 (2015).CrossRefGoogle Scholar
Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L.G., Li, D., Tan, H.Q., Zhao, Z., Xie, Z.G., and Sun, Z.C.: Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5, 12272 (2013).CrossRefGoogle ScholarPubMed
Peng, J., Gao, W., Gupta, B.K., Liu, Z., Romero-Aburto, R., Ge, L.H., Song, L., Alemany, L.B., Zhan, X.B., Gao, G.H., Vithayathil, S.A., Kaipparettu, B.A., Marti, A.A., Hayashi, T., Zhu, J.J., and Ajayan, P.M.: Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844 (2012).CrossRefGoogle ScholarPubMed
Blanco, E., Esteve-Adell, I., Atienzar, P., Casas, J.A., Hernandez, P., and Quintana, C.: Cucurbit[7]uril-stabilized gold nanoparticles as catalysts of the nitro compound reduction reaction. RSC Adv. 6, 86309 (2016).CrossRefGoogle Scholar
Messina, F., Sciortino, L., Popescu, R., Venezia, A.M., Sciortino, A., Buscarino, G., Agnello, S., Schneider, R., Gerthsen, D., Cannas, M., and Gelardi, F.M.: Fluorescent nitrogen-rich carbon nanodots with an unexpected beta-C3N4 nanocrystalline structure. J. Mater. Chem. C 4, 2598 (2016).CrossRefGoogle Scholar
Wang, X.T., Ling, D.D., Wang, Y.M., Long, H., Sun, Y.B., Shi, Y.Q., Chen, Y.C., Jing, Y., Sun, Y.M., and Dai, Y.Q.: N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response (vol 29, pg 1408, 2014). J. Mater. Res. 29, 1790 (2014).CrossRefGoogle Scholar
Yan, Z.Q., Xue, H.T., Berning, K., Lam, Y.W., and Lee, C.S.: Identification of multifunctional graphene–gold nanocomposite for environment-friendly enriching, separating, and detecting Hg2+ simultaneously. ACS Appl. Mater. Interfaces 6, 22761 (2014).CrossRefGoogle ScholarPubMed
Xu, Z.X., Gao, H.Y., and Guoxin, H.: Solution-based synthesis and characterization of a silver nanoparticle–graphene hybrid film. Carbon 49, 4731 (2011).CrossRefGoogle Scholar
Fu, S.R., He, Y.M., Wu, Q., Wu, Y., and Wu, T.H.: Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31, 2252 (2016).CrossRefGoogle Scholar
Li, X.M., Zhang, S.L., Kulinich, S.A., Liu, Y.L., and Zeng, H.B.: Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 4, 4976 (2014).CrossRefGoogle Scholar
Zhang, W., Wang, C., Liu, X., and Li, J.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).CrossRefGoogle Scholar
Lyu, Z.P., Liu, B., Wang, R., and Tian, L.H.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).CrossRefGoogle Scholar
Ding, H., Wei, J.S., and Xiong, H.M.: Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 6, 13817 (2014).CrossRefGoogle ScholarPubMed
Hu, L.L., Sun, Y., Zhou, Y.J., Bai, L., Zhang, Y.L., Han, M.M., Huang, H., Liu, Y., and Kang, Z.H.: Nitrogen and sulfur co-doped chiral carbon quantum dots with independent photoluminescence and chirality. Inorg. Chem. Front. 4, 946 (2017).CrossRefGoogle Scholar
Chen, Y.F., Wu, Y.Y., Weng, B., Wang, B., and Li, C.M.: Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(III) ions detection and cell imaging. Sens. Actuators, B 223, 689 (2016).CrossRefGoogle Scholar
Dong, Y.Q., Pang, H.C., Yang, H.B., Guo, C.X., Shao, J.W., Chi, Y.W., Li, C.M., and Yu, T.: Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. 52, 7800 (2013).CrossRefGoogle ScholarPubMed
Liu, X.F., Gao, W., Zhou, X.M., and Ma, Y.Y.: Pristine graphene quantum dots for detection of copper ions. J. Mater. Res. 29, 1401 (2014).CrossRefGoogle Scholar
Lim, J.S., Kim, S.M., Lee, S.Y., Stach, E.A., Culver, J.N., and Harris, M.T.: Biotemplated aqueous-phase palladium crystallization in the absence of external reducing agents. Nano Lett. 10, 3863 (2010).CrossRefGoogle ScholarPubMed
Das, S.K., Dickinson, C., Lafir, F., Brougham, D.F., and Marsili, E.: Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 14, 1322 (2012).CrossRefGoogle Scholar
Rani, J.R., Lim, J., Oh, J., Kim, D., Lee, D., Kim, J.W., Shin, H.S., Kim, J.H., and Jun, S.C.: Substrate and buffer layer effect on the structural and optical properties of graphene oxide thin films. RSC Adv. 3, 5926 (2013).CrossRefGoogle Scholar
Estradeszwarckopf, H. and Rousseau, B.: Photoelectron core level spectroscopy study of Cs-graphite intercalation compounds. 1. Clean surfaces study. J. Phys. Chem. Solids 53, 419 (1992).CrossRefGoogle Scholar
Park, J.W. and Shumaker-Parry, J.S.: Structural study of citrate layers on gold nanoparticles: Role of intermolecular interactions in stabilizing nanoparticles. J. Am. Chem. Soc. 136, 1907 (2014).CrossRefGoogle Scholar
Al-Johani, H., Abou-Hamad, E., Jedidi, A., Widdifield, C.M., Viger-Gravel, J., Sangaru, S.S., Gajan, D., Anjum, D.H., Ould-Chikh, S., Hedhili, M.N., Gurinov, A., Kelly, M.J., El Eter, M., Cavallo, L., Emsley, L., and Basset, J.M.: The structure and binding mode of citrate in the stabilization of gold nanoparticles. Nat. Chem. 9, 890 (2017).CrossRefGoogle ScholarPubMed
Cho, T.J., MacCuspie, R.I., Gigault, J., Gorham, J.M., Elliott, J.T., and Hackley, V.A.: Highly stable positively charged dendron-encapsulated gold nanoparticles. Langmuir 30, 3883 (2014).CrossRefGoogle ScholarPubMed
Kuang, P.Y., Zheng, P.X., Liu, Z.Q., Lei, J.L., Wu, H., Li, N., and Ma, T.Y.: Embedding Au quantum dots in rimous cadmium sulfide nanospheres for enhanced photocatalytic hydrogen evolution. Small 12, 6735 (2016).CrossRefGoogle ScholarPubMed
Mohrhusen, L. and Osmic, M.: Sterical ligand stabilization of nanocrystals versus electrostatic shielding by ionic compounds: A principle model study with TEM and XPS. RSC Adv. 7, 12897 (2017).CrossRefGoogle Scholar
Ju, J. and Chen, W.: In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 87, 1903 (2015).CrossRefGoogle ScholarPubMed
Xing, Z., Ju, Z.C., Zhao, Y.L., Wan, J.L., Zhu, Y.B., Qiang, Y.H., and Qian, Y.T.: One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci. Rep. 6, 26146 (2016).CrossRefGoogle ScholarPubMed
Dey, S., Chithaiah, P., Belawadi, S., Biswas, K., and Rao, C.N.R.: New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content. J. Mater. Res. 29, 383 (2014).CrossRefGoogle Scholar
Kelemen, S.R., Afeworki, M., Gorbaty, M.L., Sansone, M., Kwiatek, P.J., Walters, C.C., Freund, H., Siskin, M., Bence, A.E., Curry, D.J., Solum, M., Pugmire, R.J., Vandenbroucke, M., Leblond, M., and Behar, F.: Direct characterization of kerogen by X-ray and solid-state C-13 nuclear magnetic resonance methods. Energy Fuels 21, 1548 (2007).CrossRefGoogle Scholar
Liu, X.H., Ding, B.B., Zhu, Y., Wang, T.Y., Chen, B.C., Shao, Y., Chen, M.Q., Zheng, P., Zhao, Y.L., and Qian, H.S.: Facile synthesis of the SiO2/Au hybrid microspheres for excellent catalytic performance. J. Mater. Res. 29, 1417 (2014).CrossRefGoogle Scholar
Li, J., Wang, Y., Wang, M.Y., Wang, L.S., and Li, H.F.: A highly robust and reusable polyimide-supported nanosilver catalyst for the reduction of 4-nitrophenol. J. Mater. Res. 30, 2713 (2015).CrossRefGoogle Scholar
Wu, Z.W., Lu, X.M., Wei, X.J., Shen, J.Y., and Xie, J.M.: Silver nanoparticles stabilized by bundled tungsten oxide nanowires with catalytic and antibacterial activities. J. Mater. Res. 29, 71 (2014).CrossRefGoogle Scholar
Konar, S., Kalita, H., Puvvada, N., Tantubay, S., Mahto, M.K., Biswas, S., and Pathak, A.: Shape-dependent catalytic activity of CuO nanostructures. J. Catal. 336, 11 (2016).CrossRefGoogle Scholar
Zhu, C.Z., Han, L., Hu, P., and Dong, S.J.: In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties. Nanoscale 4, 1641 (2012).CrossRefGoogle ScholarPubMed
Xiao, C.F., Chen, S.M., Zhang, L.Y., Zhou, S.Q., and Wu, W.T.: One-pot synthesis of responsive catalytic Au@PVP hybrid nanogels. Chem. Commun. 48, 11751 (2012).CrossRefGoogle ScholarPubMed
Viswanathan, P., Bhuvaneswari, T.S., and Ramaraj, R.: Investigation on the catalytic activity of aminosilane stabilized gold nanocatalysts towards the reduction of nitroaromatics. Colloids Surf., A 528, 48 (2017).CrossRefGoogle Scholar
Fenger, R., Fertitta, E., Kirmse, H., Thunemann, A.F., and Rademann, K.: Size dependent catalysis with CTAB-stabilized gold nanoparticles. Phys. Chem. Chem. Phys. 14, 9343 (2012).CrossRefGoogle ScholarPubMed
Lv, J.J., Wang, A.J., Ma, X.H., Xiang, R.Y., Chen, J.R., and Feng, J.J.: One-pot synthesis of porous Pt–Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 3, 290 (2015).CrossRefGoogle Scholar
Li, H., Chi, L., Yang, C., Zhang, L.G., Yue, F., and Wang, J.D.: MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J. Mater. Res. 31, 3069 (2016).CrossRefGoogle Scholar
Li, F., Han, T.H., Wang, H.G., Zheng, X.M., Wan, J.M., and Ni, B.K.: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).CrossRefGoogle Scholar
Supplementary material: File

Mahto et al. supplementary material

Mahto et al. supplementary material 1

Download Mahto et al. supplementary material(File)
File 1.7 MB