Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:08:56.288Z Has data issue: false hasContentIssue false

Multiscale and multicycle instrumented indentation to determine mechanical properties: Application to the BK7 crown borosilicate

Published online by Cambridge University Press:  16 January 2017

M. Bentoumi*
Affiliation:
Institut Optique et Mécanique de Précision, LOA, Ferhat Abbas, Sétif 1900, Algérie
D. Bouzid
Affiliation:
Institut Optique et Mécanique de Précision, LOA, Ferhat Abbas, Sétif 1900, Algérie
H. Benzaama
Affiliation:
École Nationale Polytechnique d’Oran, ENPO, Oran 31000, Algérie
A. Mejias
Affiliation:
Arts et Métiers ParisTech, MSMP, ENSAM 8 Boulevard Louis XIV, Lille 59046, France; and Facultad de Ingeniería, CIMEC, Universidad de Carabobo, Valencia 2005, Venezuela
S. Kossman
Affiliation:
Univ. Lille, FRE 3723-LML-Laboratoire de Mécanique de Lille, Lille 59000, France
A. Montagne
Affiliation:
Arts et Métiers ParisTech, MSMP, ENSAM 8, Lille 59046, France
A. Iost
Affiliation:
Arts et Métiers ParisTech, MSMP, ENSAM 8, Lille 59046, France
D. Chicot
Affiliation:
Univ. Lille, FRE 3723-LML-Laboratoire de Mécanique de Lille, Lille 59000, France
*
a)Address all correspondence to this author. e-mail: hamoudi_10@yahoo.fr
Get access

Abstract

In this work, nano, micro, and macro-indentation tests under standard or multicycle loading conditions were performed for studying the mechanical behavior of a crown borosilicate glass sample with the objective to study the scale effect in indentation and the influence of cracks formation on the assessment of mechanical properties. When no cracks were initiated during the indenter penetration, especially for low indentation loads, the mechanical properties were deduced by applying different methodologies, (i) Standard (or monocyclic) loading, (ii) Continuous Stiffness Measurement mode, (iii) Constant and progressive multicycle loading, and (iv) Dynamic hardness computation. It has been found independently of the loading conditions, Martens hardness and elastic modulus are approximately 3.3 and 70 GPa, respectively. However, when cracking and chipping are produced during the indentation test, two damage parameters related to hardness and elastic modulus can be used for representing the decrease of the mechanical properties as a function of the relative penetration depth.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: George M. Pharr

References

REFERENCES

Balland, B.: Optique géométrique: Imagerie et instruments (Geometrical Optics: Imaging and Instruments) (PPUR Presses Polytechniques, Lausanne, 2007); p. 860.Google Scholar
Phalippou, J.: Verres: Propriétés et applications (Glasses: Properties and Applications), Techniques de l’ingénieur AF3601, July 10, 2001. CrossRefGoogle Scholar
VanderVoort, G.F.: Metallography: Principles and Practice (McGraw-Hill, New York, 1984); p. 752.CrossRefGoogle Scholar
Rupp, W.I.: Loose abrasive grinding of optical surface. Appl. Opt. 11(12), 27972810 (1972).CrossRefGoogle Scholar
Tesar, A.A. and Fuchs, B.A.: Removal rates of fused silica with cerium oxide and pitch polishing. Proc. Soc. Photo-Opt. Instr. Eng., 1531, 8090 (1992).Google Scholar
Karow, H.H.: Fabrication Methods for Precision Optics (Wiley-Interscience, Hoboken, 2004); p. 768.Google Scholar
Brinksmeier, E., Riemer, O., and Gessenharter, A.: Finishing of structured surfaces by abrasive polishing. Precis. Eng. 30(3), 325336 (2006).CrossRefGoogle Scholar
Pollicove, H.H. and Moore, D.T.: Optics manufacturing technology moves toward automation. Laser Focus World 27, 145149 (1991).Google Scholar
Golini, D. and Czajkowski, W.: Micro grinding makes ultra-smooth optics fast. Laser Focus World 28, 146152 (1992).Google Scholar
Golini, D.: Influence of process parameters in deterministic micro-grinding. OSA 13, 2831 (1994).Google Scholar
Pollicove, H.H.: Computer aided optics manufacturing. Opt. Photonics News 6, 1519 (1994).CrossRefGoogle Scholar
Aghan, R.L. and Samuels, L.E.: Mechanisms of abrasive polishing. Wear 16(4), 293301 (1970).CrossRefGoogle Scholar
Xie, Y. and Bushan, B.: Effects of particle size, polishing pad and contact pressure in free abrasive polishing. Wear 200(1–2), 281295 (1996).CrossRefGoogle Scholar
Lambropoulos, J.C., Xu, S., and Fang, T.: Loose abrasive lapping hardness of optical glasses and its interpretation. Appl. Opt. 36(7), 15011516 (1997).CrossRefGoogle ScholarPubMed
Suratwala, T., Davis, P., Wong, L., Miller, P., Feit, M., Menapace, J., and Steele, R.: Sub-surface mechanical damage distributions during grinding of fused silica. J. Non-Cryst. Solids 352(52–54), 56015617 (2006).CrossRefGoogle Scholar
Esmaeilzare, A., Rahimi, A., and Rezaei, S.M.: Investigation of subsurface damage and surface roughness in grinding process of Zerodur glass-ceramic. App. Surf. Sci. 313, 6775 (2014).CrossRefGoogle Scholar
Anunmana, C., Ausavice, K.J., and Mecholsky, J.J. Jr: Residual stress in glass: Indentation crack and fractography approaches. Dental Mater. 25, 14531458 (2009).CrossRefGoogle ScholarPubMed
Komanduri, R., Lucca, D.A., and Tani, Y.: Technological advances in fine abrasive processes. Annals of the CIRP 46(2), 545596 (1997).CrossRefGoogle Scholar
Jacobs, S.D., Arrasmith, S.R., Kozhinova, I.A., Gregg, L.L., Shorey, A.B., Romanofsky, H.J., Golini, D., Kordonski, W.I., Dumas, P., and Hogan, S.: MRF: Computer-controlled optics manufacturing. Am. Ceram. Soc. Bull. 78, 4248 (1999).Google Scholar
Marioge, J.P.: Surface optique: Méthodes de fabrication et de contrôle, recherches (Optical Surface: Production and Control Methods, Researches) (EDP Sciences France, Les Ulis, 2000); pp. 2633.CrossRefGoogle Scholar
Oliver, W. and Pharr, G.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 15641583 (1982).CrossRefGoogle Scholar
Antunes, J.M., Menezes, L.F., and Fernandes, J.V.: Three-dimensional numerical simulation of Vickers indentation tests. Int. J. Sol. Struct. 43(13–4), 784806 (2006).CrossRefGoogle Scholar
Field, J.T.R. and Telling, R.H.: The Elastic Modulus and Poisson Ratio of Diamond, Research Note (Cavendish Laboratory, Cambridge, 1999).Google Scholar
Chicot, D., Yetna N’Jock, M., Puchi-Cabrera, E.S., Iost, A., Staia, M.H., Louis, G., Bouscarrat, G., and Aumaitre, R.: A contact area function for Berkovich nanoindentation: Application to hardness determination of a TiHfCN thin film. Thin Solid Films 558(2), 259266 (2014).CrossRefGoogle Scholar
Antunes, J.M., Cavaleiro, A., Menezes, L.F., Simoes, M.I., and Fernandes, J.V.: Ultra-microhardness testing procedure with Vickers indenter. Surf. Coat. Technol. 149, 2735 (2002).CrossRefGoogle Scholar
Berla, L.A., Allen, A.M., Han, S.M., and Nix, W.D.: A physically based model for indenter tip shape calibration for nanoindentation. J. Mater. Res. 25, 735745 (2010).CrossRefGoogle Scholar
Chicot, D., De Baets, P., Staia, M., Puchi-Cabrera, E., Louis, G., Delgado, Y.P., and Vleugels, J.: Influence of tip defect and indenter shape on the mechanical properties determination by indentation of a TiB2–60% B4C ceramic composite. Int. J. Refract. Met. Hard Mater. 38, 102110 (2013).CrossRefGoogle Scholar
Troyon, M. and Huang, L.: Correction factor for contact area in nanoindentation measurements. J. Mater. Res. 20, 610617 (2005).CrossRefGoogle Scholar
N’jock, M.Y., Chicot, D., Ndjaka, J., Lesage, J., Decoopman, X., Roudet, F., and Mejias, A.: A criterion to identify sinking-in and piling-up in indentation of materials. Int. J. Mech. Sci. 90, 145150 (2015).CrossRefGoogle Scholar
Chicot, D. and Mercier, D.: Improvement in depth-sensing indentation to calculate the universal hardness on the entire loading curve. Mech. Mater. 40(4–5), 171182 (2008).CrossRefGoogle Scholar
Lemaitre, J. and Dufailly, J.: Damage measurements. Eng. Fract. Mech. 28, 643661 (1987).CrossRefGoogle Scholar
Malzbender, J., den Toonder, J.M.J., Balkenende, A.R., and de With, G.: Measuring mechanical properties of coatings: A methodology applied to nano-particle fille sol-gel coatings on glass. Mater. Sci. Eng., R 36, 47103 (2002).CrossRefGoogle Scholar
Cook, R.F. and Pharr, G.M.: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787817 (1990).CrossRefGoogle Scholar