Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T20:52:57.453Z Has data issue: false hasContentIssue false

Morphology, rheological, and electrical properties of flexible epoxy/carbon composites cured by UV technique

Published online by Cambridge University Press:  22 June 2020

Pollawat Charoeythornkhajhornchai*
Affiliation:
Division of Materials Engineering, Faculty of Engineering, Burapha University, Muang, Chonburi20131, Thailand
Chavakorn Samthong
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok10330, Thailand
*
a)Address all correspondence to this author. e-mail: pollawat.ch@eng.buu.ac.th
Get access

Abstract

The aim of this research was to develop the UV-cured epoxy/carbon composites. The rheological properties of the uncured neat epoxy and epoxy composite with graphite, graphene, and multi-walled carbon nanotube (MWCNT) were evaluated to observe the macroscopic flow behavior and the microstructure by shear force. The results showed that epoxy/carbon composites at high filler content exhibited shear-thinning behavior with a high yield stress value and epoxy/MWCNT at 30 phr showed this characteristic obviously. The fractured surface and particle dispersion in the epoxy matrix were evaluated by scanning electron microscopy and transmission electron microscopy, respectively. Epoxy/carbon composites at high filler content displayed rough fracture surface with particle agglomeration, thus the electrical conductivity increased. The result showed that the epoxy/MWCNT composites had high potential to use as a conductive adhesive with a 3D printing process due to high electrical conductivity with high viscosity that could be formed easily during processing.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Farahani, R.D., Dube, M., and Therriault, D.: Three-dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Adv. Mater. 28, 57945821 (2016).CrossRefGoogle ScholarPubMed
Weng, Z., Zhou, Y., Lin, W., Senthil, T., and Wu, L.: Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites, Part A 88, 234242 (2016).CrossRefGoogle Scholar
Manapat, J.Z., Mangadlao, J.D., Tiu, B.D.B., Tritchler, G.C., and Advincula, R.C.: High-strength stereolithographic 3D printed nanocomposites: Graphene oxide metastability. ACS Appl. Mater. Interfaces 9, 1008510093 (2017).CrossRefGoogle ScholarPubMed
Manapat, J.Z., Chen, Q.Y., Ye, P., and Advincula, R.C.: 3D printing of polymer nanocomposites via stereolithography. Macromol. Mater. Eng. 302, 113 (2017).CrossRefGoogle Scholar
Yu, R., Yang, X., Zhang, Y., Zhao, X., Wu, X., Zhao, T., Zhao, Y., and Huang, W.: Three-dimensional printing of shape memory composites with epoxy-acrylate hybrid photopolymer. ACS Appl. Mater. Interfaces 9, 18201829 (2017).CrossRefGoogle ScholarPubMed
Bartolo, P.J. and Gaspar, J.: Metal filled resin for stereolithography metal part. CIRP Ann. Manuf. Technol. 57, 235238 (2008).CrossRefGoogle Scholar
Kim, T.Y., Kim, S.I., and Park, J.J.: Fabrication of thermally stable silver-organic complex (TS-SOC) based conductible filament materials for 3D printing. Adv. Mater. Technol. 2, 19 (2017).Google Scholar
Szebenyi, G., Czigany, T., Magyar, B., and Karger-Kocsis, J.: 3D printing-assisted interphase engineering of polymer composites: Concept and feasibility. Express Polym. Lett. 11, 525530 (2017).CrossRefGoogle Scholar
Kuang, X., Zhao, Z., Chen, K.J., Fang, D.N., Kang, G.Z., and Qi, H.J.: High-speed 3D printing of high-performance thermosetting polymers via two-stage curing. Macromol. Rapid Commun. 39, 18 (2018).CrossRefGoogle ScholarPubMed
Abueidda, D.W., Abu Al-Rub, R.K., Dalaq, A.S., Younes, H.A., Al Ghaferi, A.A., and Shah, T.K.: Electrical conductivity of 3D periodic architectured interpenetrating phase composites with carbon nanostructured-epoxy reinforcements. Compos. Sci. Technol. 118, 127134 (2015).CrossRefGoogle Scholar
Sun, H., Kim, Y., Kim, Y.C., Park, I.K., Suhr, J., Byun, D., Choi, H.R., Kuk, K., Baek, O.H., Jung, Y.K., Choi, H.J., Kim, K.J., and Nam, J.D.: Self-standing and shape-memorable UV-curing epoxy polymers for three-dimensional (3D) continuous-filament printing. J. Mater. Chem. 6, 29963003 (2018).Google Scholar
Chen, K., Kuang, X., Li, V., Kang, G., and Qi, H.J.: Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter 14, 18791886 (2018).CrossRefGoogle ScholarPubMed
Hmeidat, N.S., Kemp, J.W., and Compton, B.G.: High-strength epoxy nanocomposites for 3D printing. Compos. Sci. Technol. 160, 920 (2018).CrossRefGoogle Scholar
Chizari, K., Arjmand, M., Liu, Z., Sundararaj, U., and Therriault, D.: Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. 11, 112118 (2017).CrossRefGoogle Scholar
Compton, B.G., Hmeidat, N.S., Pack, R.C., Heres, M.F., and Sangoro, J.R.S.: Electrical and mechanical properties of 3D-printed graphene-reinforced epoxy. JOM 70, 292297 (2018).CrossRefGoogle Scholar
Nguyen, N., Melamed, E., Park, J.G., Zhang, S.L., Hao, A.Y., and Liang, R.: Direct printing of thermal management device using low-cost composite Ink. Macromol. Mater. Eng. 302, 16 (2017).CrossRefGoogle Scholar
Fahem, Z. and Bauhofer, W.: Free radical fast photo-cured gate dielectric for top-gate polymer field effect transistors. Org. Electron. 13, 13821385 (2012).CrossRefGoogle Scholar
Atif, M., Yang, J.L., Yang, H.T., Jun, N., and Bongiovanni, R.: Effect of novel UV-curing approach on thermo-mechanical properties of colored epoxy composites in outsized dimensions. J. Compos. Mater. 50, 31473156 (2016).CrossRefGoogle Scholar
Atif, M., Bongiovanni, R., and Yang, J.: Cationically UV-cured epoxy composites. Polym. Rev. 55, 90106 (2015).CrossRefGoogle Scholar
James, C. V. and Saoshi, L.: Photoinitiated cationic polymerization of epoxy alcohol monomers. J. Polym. Sci. A Polym. Chem. 38, 389401 (2000).Google Scholar
Liu, G.D., Zhu, X.Q., Xu, B.B., Qian, X.C., Song, G.Q., and Nie, J.: Cationic photopolymerization of bisphenol A diglycidyl ether epoxy under 385 nm. J. Appl. Polym. Sci. 130, 36983703 (2013).CrossRefGoogle Scholar
James, C. V. and Ricardo, A.O.: Benzyl alcohols as accelerators in the photoinitiated cationic polymerization of epoxide monomers. Polym. Sci. A Polym. Chem. 40, 22982309 (2002).Google Scholar
Sangermano, M., Malucelli, G., Morel, F., Decker, C., and Priola, A.: Cationic photopolymerization of vinyl ether systems: Influence of the presence of hydrogen donor additives. Eur. Polym. J. 35, 639645 (1999).CrossRefGoogle Scholar
Zhou, J.P., Jia, S.J., Fu, W.L., Liu, Z.L., and Tan, Z.Y.: Fast curing of thick components of epoxy via modified UV-triggered frontal polymerization propagating horizontally. Mater. Lett. 176, 228231 (2016).CrossRefGoogle Scholar
Sangermano, M., Periolatto, M., Signore, V., and Spena, P.R.: Improvement of the water-vapor barrier properties of an UV-cured epoxy coating containing graphite oxide nanoplatelets. Prog. Org. Coat. 103, 152155 (2017).CrossRefGoogle Scholar
Chen, Y., Jia, X., Wang, M., and Wang, T.: A synergistic effect of a ferrocenium salt on the diaryliodonium salt-induced visible-light curing of bisphenol-A epoxy resin. RSC Adv. 5, 3317133176 (2015).CrossRefGoogle Scholar
Sharif, M., Pourabbas, B., Sangermano, M., Moghadam, F.S., Mohammadi, M., Roppolo, I., and Fazli, A.: The effect of graphene oxide on UV curing kinetics and properties of SU8 nanocomposites. Polym. Int. 66, 405417 (2017).CrossRefGoogle Scholar
Alhumade, H., Yu, A., Elkamel, A., Simon, L., and Abdala, A.: Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel. Express Polym. Lett. 10, 10341046 (2016).CrossRefGoogle Scholar
Boro, U. and Karak, N.: Tannic acid based hyperbranched epoxy/reduced graphene oxide nanocomposites as surface coating materials. Prog. Org. Coat. 104, 180187 (2017).CrossRefGoogle Scholar
Martin-Gallego, M., Hernández, M., Lorenzo, V., Verdejo, R., Lopez-Manchado, M.A., and Sangermano, M.: Cationic photocured epoxy nanocomposites filled with different carbon fillers. Polymer 53, 18311838 (2012).CrossRefGoogle Scholar
Uraiwan, P. and Anongnat, S.: Effective thermal conductivity of 3,5-diaminobenzoyl-functionalized multiwalled carbon nanotubes/epoxy composites. J. Appl. Polym. Sci. 130, 31843196 (2013).Google Scholar
Uraiwan, P., Chavakorn, S., and Anongnat, S.: Direct functionalization with 3,5-substituted benzoic acids of multiwalled carbon nanotube/epoxy composites. Polym. Eng. Sci. 53, 21942204 (2013).Google Scholar
Uraiwan, P., Chavakorn, S., Piyasan, P., and Anongnat, S.: Influence of diaminobenzoyl-functionalized multiwalled carbon nanotubes on the nonisothermal curing kinetics, dynamic mechanical properties, and thermal conductivity of epoxy–anhydride composites. J. Appl. Polym. Sci. 133, 110 (2016).Google Scholar
Samali, D., Maung, H., and Webster, C.D.: Cationic UV-curable conductive composites from exfoliated graphite. Macrosmol. Mater. Eng. 296, 7082 (2011).Google Scholar
Genovese, D.B.: Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Adv. Colloid Interface Sci. 171–172, 116 (2012).CrossRefGoogle ScholarPubMed
Abdelhalim, M.K., Mady, M.M., and Ghannam, M.M.: Rheological and dielectric properties of different gold nanoparticle sizes. Lipids Health Dis. 10, 110 (2011).CrossRefGoogle ScholarPubMed
Moelants, K.N., Cardinaels, R., Jolie, R.P., Verrijssen, T.A.J., Van Buggenhout, S., Zumalacarregui, L.M., Van Loey, A.M., Moldenaers, P., and Hendrickx, M.E.: Relation between particle properties and rheological characteristics of carrot-derived suspensions. Food Bioprocess Technol. 6, 11271143 (2013).CrossRefGoogle Scholar
Zhang, S.S., Zhang, Y.J., and Wang, H.W.: Effect of particle size distributions on the rheology of Sn/Ag/Cu lead-free solder pastes. Mater. Des. 31, 594598 (2010).CrossRefGoogle Scholar
Khalkhal, F. and Carreau, P.J.: Scaling behavior of the elastic properties of non-dilute MWCNT-epoxy suspensions. Rheol. Acta 50, 717728 (2011).CrossRefGoogle Scholar
Aoki, Y.: Rheology of carbon black suspensions. IV. Effect of suspending media on the sol-gel transition behavior. Rheol. Acta 50, 779785 (2011).CrossRefGoogle Scholar
Tadros, T.F.: Rheology of Dispersions (Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2010); pp. 4287.CrossRefGoogle Scholar
Calambas Pulgarin, H.L., Garrido, L.B., and Albano, M.P.: Rheological properties of aqueous alumina-alumina-doped Y-PSZ suspensions. Ceram. Int. 38, 18431849 (2012).CrossRefGoogle Scholar
Solomon, M.J., Almusallam, A.S., Seefeldt, K.F., Somwangthanaroj, A., and Varadan, P.: Rheology of polypropylene/clay hybrid materials. Macromolecules 34, 18641872 (2001).CrossRefGoogle Scholar
Liu, Z., Li, H., Gu, J., Wang, D., and Qu, C.: Performances of an epoxy-amine network after introducing the MWCNTs: Rheology, thermal and electrical conductivity, mechanical properties. J. Adhes. Sci. Technol. 33, 382394 (2019).CrossRefGoogle Scholar
Levy, I., Wormser, E.M., Varenik, M., Buzaglo, M., Nadiv, R., and Regev, O.: Graphene-graphite hybrid epoxy composites with controllable workability for thermal management. Beilstein J. Nanotechnol. 10, 95104 (2019).CrossRefGoogle ScholarPubMed
Matveenko, V.N. and Kirsanov, E.A.: The viscosity and structure of dispersed systems. Mosc. Univ. Chem. Bull. 4, 243276 (2011).Google Scholar
Castellino, M., Chiolerio, A., Shahzad, M.I., Jagdale, P.V., and Tagliaferro, A.: Electrical conductivity phenomena in an epoxy resin–carbon-based materials composite. Composites, Part A 61, 108114 (2014).CrossRefGoogle Scholar
Gojny, F.H., Wichmann, M.G., Fiedler, B., Kinloch, I.A., Bauhofer, W., Windle, A.H., and Schulte, K.: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47, 20362045 (2006).CrossRefGoogle Scholar
Chang, J., Liang, G., Gu, A., Cai, S., and Yuan, L.: The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50, 689698 (2012).CrossRefGoogle Scholar
Moisala, A., Li, Q., Kinloch, I.A., and Windle, A.H.: Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 66, 12851288 (2006).CrossRefGoogle Scholar
Sandler, J.W., Kirk, J.E., Kinloch, I.A., Shaffer, M.P., and Windle, A.H.: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 58935899 (2003).CrossRefGoogle Scholar
Li, Q., Xue, Q., Hao, L., Gao, X., and Zheng, Q.: Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos. Sci. Technol. 68, 22902296 (2008).CrossRefGoogle Scholar
Martin, C.A., Sandler, J.W., Shaffer, M.P., Schwarz, M.K., Bauhofer, W., Schulte, K., and Windle, A.H.: Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos. Sci. Technol. 64, 23092316 (2004).CrossRefGoogle Scholar
Min, C., Yu, D., Cao, J., Wang, G., and Feng, L.: A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55, 116125 (2013).CrossRefGoogle Scholar
Sandler, J., Shaffer, M.S.P., Prasse, T., Bauhofer, W., Schulte, K., and Windle, A.H.: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40, 59675971 (1999).CrossRefGoogle Scholar
Charoeythornkhajhornchai, P., Arthanu, P., and Poonsap, N.: Cure behavior, morphology and dielectric constant of flexible epoxy composite with Cu particle, SWCNT and MWCNT nanoparticles by UV-Cure technique. Burapha Sci. J. 24, 489499 (2018).Google Scholar