Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:25:07.632Z Has data issue: false hasContentIssue false

Modulated martensite formation behavior in Fe–Ni-based alloys; athermal and thermally activated mechanisms

Published online by Cambridge University Press:  30 June 2015

Sarah Loewy*
Affiliation:
Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), D-70569 Stuttgart, Germany; and Institute for Materials Science, University of Stuttgart, D-70569 Stuttgart, Germany
Bastian Rheingans
Affiliation:
Institute for Materials Science, University of Stuttgart, D-70569 Stuttgart, Germany
Sai Ramudu Meka
Affiliation:
Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), D-70569 Stuttgart, Germany
Eric J. Mittemeijer
Affiliation:
Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), D-70569 Stuttgart, Germany; and Institute for Materials Science, University of Stuttgart, D-70569 Stuttgart, Germany
*
a)Address all correspondence to this author. e-mail: s.loewy@is.mpg.de
Get access

Abstract

The martensitic transformation of Fe–22 wt% Ni austenite was investigated by high-resolution dilatometry as well as differential thermal analysis. Macroscopically discontinuous formation of lath martensite was observed, manifested in a train of transformation-rate maxima. It is proposed that the modulation of the transformation rate is caused by simultaneous formation of blocks in different martensite packages. The origin of simultaneity is ascribed to the interplay of chemical driving force, developing strain energy, and its relaxation upon sufficiently slow cooling. The transformation-rate maxima become more distinct with decreasing cooling rate (CR), clearly indicating the involvement of a thermally activated process in martensite formation. Quantitative analysis of the microstructure of differently cooled specimens revealed smaller martensite block sizes for higher CRs. All observations are compatible with athermal nucleation and thermally activated growth. (Local) strain relaxation in the austenite was identified as the involved thermally activated mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nishiyama, Z.: Martensitic Transformation, Fine, M.E., Meshii, M., and Wayman, C.M. eds.; Academic Press: New York, 1978.Google Scholar
Machlin, E.S. and Cohen, M.: Burst phenomenon in martensitic transformation. Trans AIME 191, 746 (1951).Google Scholar
Brook, R. and Entwisle, A.: Kinetics of burst transformation to martensite. J. Iron Steel Inst. 203, 905 (1965).Google Scholar
Amengual, A., Manosa, L., Marco, F., Picornell, C., Segui, C., and Torra, V.: Systematic study of the martensitic transformation in a Cu-Zn-Al alloy. Reversibility versus irreversibility via acoustic emission. Thermochim. Acta 116, 195 (1987).CrossRefGoogle Scholar
Salje, E.K.H., Koppensteiner, J., Reinecker, M., Schranz, W., and Planes, A.: Jerky elasticity: Avalanches and the martensitic transition in Cu74.08Al23.13Be2.79 shape-memory alloy. Appl. Phys. Lett. 95, 231908 (2009).CrossRefGoogle Scholar
Gallardo, M.C., Manchado, J., Romero, F.J., del Cerro, J., Salje, E.K.H., Planes, A., Vives, E., Romero, R., and Stipcich, M.: Avalanche criticality in the martensitic transition of Cu67.64Zn16.71Al15.65 shape-memory alloy: A calorimetric and acoustic emission study. Phys. Rev. B 81, 174102 (2010).CrossRefGoogle Scholar
Niemann, R., Kopeček, J., Heczko, O., Romberg, J., Schultz, L., Fähler, S., Vives, E., Mañosa, L., and Planes, A.: Localizing sources of acoustic emission during the martensitic transformation. Phys. Rev. B 89, 214118 (2014).CrossRefGoogle Scholar
Mittemeijer, E.J.: Fundamentals of Materials Science (Springer, Berlin-Heidelberg, 2011).CrossRefGoogle Scholar
Loewy, S., Rheingans, B., Meka, S.R., and Mittemeijer, E.J.: Unusual martensite-formation kinetics in steels: Observation of discontinuous transformation rates. Acta Mater. 64, 93 (2014).CrossRefGoogle Scholar
Villa, M., Pantleon, K., Reich, M., Kessler, O., and Somers, M.A.J.: Kinetics of anomalous multi-step formation of lath martensite in steel. Acta Mater. 80, 468 (2014).CrossRefGoogle Scholar
Villa, M., Hansen, M.F., Pantleon, K., and Somers, M.A.J.: Anomalous kinetics of lath martensite formation in stainless steel. Mater. Sci. Technol. (2014). DOI: 10.1179/1743284714Y.0000000709.Google Scholar
Kaufman, L. and Cohen, M.: The martensitic transformation in the iron-nickel system. Trans AIME 206, 1393 (1956).Google Scholar
Klostermann, J.A. and Burgers, W.G.: Surface martensite in iron-nickel. Acta Metall. 12, 355 (1964).CrossRefGoogle Scholar
Marder, J. and Marder, A.: The morphology of iron-nickel massive martensite. Trans. ASM 62, 1 (1969).Google Scholar
Floreen, S.: The physical metallurgy of maraging steels. Int. Mater. Rev. 13, 115 (1968).CrossRefGoogle Scholar
Tsuzaki, K., Maki, T., and Tamura, I.: Isothermal character and cooling rate dependence of lath martensitic transformation in Fe-15% Ni alloy. Scr. Metall. 21, 1693 (1987).CrossRefGoogle Scholar
Tsuzaki, K., Fukiage, T., Maki, T., and Tamura, I.: The effect of Ni content on the isothermal character of lath martensitic transformation in Fe-Ni alloys. Mater. Sci. Forum 5658, 229 (1990).Google Scholar
Wilson, E.A., Allen, S., and Butler, J.: γ→α-transformation on Fe-15Ni. Met. Sci. 16, 539 (1982).CrossRefGoogle Scholar
Wilson, E.A., Shtansky, D.V., and Ohmori, Y.: A kinetic and electronmicroscopic study of transformations in continuously cooled Fe-15% Ni alloys. ISIJ Int. 41, 866 (2001).CrossRefGoogle Scholar
Liu, Y., Zhang, L., Sommer, F., and Mittemeijer, E.J.: Kinetics of martensite formation in substitutional Fe-Al alloys; dilatometric analysis. Metall. Mater. Trans. A 44, 1430 (2013).CrossRefGoogle Scholar
Liu, Y.C., Sommer, F., and Mittemeijer, E.J.: Calibration of the differential dilatometric measurement signal upon heating and cooling; thermal expansion of pure iron. Thermochim. Acta 413, 215 (2004).CrossRefGoogle Scholar
Baumann, W., Leineweber, A., and Mittemeijer, E.J.: Calibration and desmearing of a differential thermal analysis measurement signal – Upon heating and cooling – In the high-temperature region. Thermochim. Acta 472, 50 (2008).CrossRefGoogle Scholar
Kempen, A.T.W., Sommer, F., and Mittemeijer, E.J.: Calibration and desmearing of a differential thermal analysis measurement signal upon heating and cooling. Thermochim. Acta 383, 21 (2002).CrossRefGoogle Scholar
Kitahara, H., Ueji, R., Tsuji, N., and Minamino, Y.: Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 54, 1279 (2006).CrossRefGoogle Scholar
Morito, S., Huang, X., Furuhara, T., Maki, T., and Hansen, N.: The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 54, 5323 (2006).CrossRefGoogle Scholar
Thadhani, N. and Meyers, A.: Kinetics of isothermal martensitic transformation. Prog. Mater. Sci. 30, 1 (1986).CrossRefGoogle Scholar
Morito, S., Igarashi, R., Kamiya, K., Ohba, T., and Maki, T.: Effect of cooling rate on morphology and crystallography of lath martensite in Fe-Ni alloys. Mater. Sci. Forum 638642, 1459 (2010).CrossRefGoogle Scholar
Tsuzaki, K. and Maki, T.: The effect of cooling rate on the morphology of lath martensite in Fe-Ni alloys. J. Japan Inst. Met. 45, 126 (1981).CrossRefGoogle Scholar
Cech, R.E. and Turnbull, D.: Heterogeneous nucleation of martensite transformation. Trans AIME 206, 124 (1956).Google Scholar
Fisher, J.: Application of nucleation theory to isothermal martensite. Acta Metall. 1, 1 (1953).CrossRefGoogle Scholar
Pati, S.R. and Cohen, M.: Kinetics of isothermal martensitic transformations in an iron-nickel-manganese alloy. Acta Metall. 19, 1327 (1971).CrossRefGoogle Scholar
Raghavan, V. and Cohen, M.: Measurement and interpretation of isothermal martensitic kinetics. Metall. Mater. Trans. B 2, 2409 (1971).CrossRefGoogle Scholar
Ghosh, G. and Olson, G.B.: Kinetics of fcc→bcc heterogeneous martensitic nucleation-II. Thermal activation. Acta Metall. Mater. 42(10), 3371 (1994).CrossRefGoogle Scholar
Kim, D., Lee, S-J., and de Cooman, B.C.: Microstructure of low C steel isothermally transformed in the M s to M f temperature range. Metall. Mater. Trans. A 43, 4967 (2012).CrossRefGoogle Scholar
Villa, M., Hansen, M.F., Pantleon, K., and Somers, M.A.J.: Thermally activated growth of lath martensite in Fe–Cr–Ni–Al precipitation hardenable stainless steel. Mater. Sci. Technol. 31, 115 (2015).CrossRefGoogle Scholar
Liu, Y.C., Sommer, F., and Mittemeijer, E.J.: Abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys. Acta Mater. 51, 507 (2003).CrossRefGoogle Scholar
Liu, Y.C., Sommer, F., and Mittemeijer, E.J.: Abnormal austenite–ferrite transformation behaviour of pure iron. Philos. Mag. 84, 1853 (2004).CrossRefGoogle Scholar