Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T01:38:05.008Z Has data issue: false hasContentIssue false

Modification of polyethylene tube surface in dielectric barrier discharge

Published online by Cambridge University Press:  17 July 2018

Michał Młotek*
Affiliation:
Faculty of Chemistry, Warsaw University of Technology, Warszawa 0-664, Poland
Adam Błaszczyk
Affiliation:
Faculty of Chemistry, Warsaw University of Technology, Warszawa 0-664, Poland
Krzysztof Krawczyk
Affiliation:
Faculty of Chemistry, Warsaw University of Technology, Warszawa 0-664, Poland
*
a)Address all correspondence to this author. e-mail: mmlotek@ch.pw.edu.pl
Get access

Abstract

The objective of the study was to modify the external surface of commercially produced polyethylene (PE) tubes made by Balton, Poland, to improve their hydrophilic properties. The process was conducted in a new dielectric barrier discharge reactor. The carrier gases were argon and air, whereas carbon dioxide and hydrogen were the doping gases. The influence of the gas composition in the plasma chamber on the surface free energy (SFE) of PE tubes was investigated. For the gas composition 50 vol% of Ar + 50 vol% of CO2, the highest value of the SFE (53.4 mJ/m2) was obtained. It means an increase in SFE approx. 17% as compared to the unmodified sample (46.0 mJ/m2). Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) results indicates that on the surface of the tubes, carboxyl, carbonyl, and hydroxyl groups were formed. Those oxygen-containing groups could be responsible for the increase of the hydrophilic effect. The O/C ratio on the surface, measured by the X-ray photoelectron spectroscopy method, was three times higher in the case of the modified samples than in those which were not subjected to plasma treatment.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liston, E.M., Martinu, L., and Wertheimer, M.R.: Plasma surface modification of polymers for improved adhesion: A critical review. J. Adhes. Sci. Technol. 7, 1091 (1993).CrossRefGoogle Scholar
Yasuda, H. and Yasuda, T.: The competitive ablation and polymerization (CAP) principle and the plasma sensitivity of elements in plasma polymerization and treatment. J. Polym. Sci., Part A: Polym. Chem. 38, 943 (2000).3.0.CO;2-3>CrossRefGoogle Scholar
Opalinska, T., Ulejczyk, B., Karpinski, L., and Schmidt-Szalowski, K.: Deposition of thin films based on silica on polycarbonates by pulsed dielectric barier discharge. Polimery 49, 257 (2004).Google Scholar
Van Deynse, A., De Geyter, N., Leys, C., and Morent, R.: Influence of water vapor addition on the surface modification of polyethylene in an argon dielectric barrier discharge. Plasma Processes Polym. 11, 117 (2014).CrossRefGoogle Scholar
Żenkiewicz, M.: Adhesion and Modification of the Surface Layer of Macromolecular Materials (WNT, Warszawa, Poland, 2000).Google Scholar
Queffélec, C., Petit, M., Janvier, P., Knight, D.A., and Bujoli, B.: Surface modification using phosphonic acids and esters. Chem. Rev. 112, 3777 (2012).CrossRefGoogle ScholarPubMed
Kurella, A. and Dahotre, N.B.: Review paper: Surface modification for bioimplants: The role of laser surface engineering. J. Biomater. Appl. 20, 5 (2005).CrossRefGoogle ScholarPubMed
Grace, J.M. and Gerenser, L.J.: Plasma treatment of polymers. J. Dispersion Sci. Technol. 24, 305 (2003).CrossRefGoogle Scholar
Opalinska, T., Ulejczyk, B., Karpinski, L., and Schmidt-Szalowski, K.: Applications of pulsed discharge to thin-film deposition. IEEE Trans. Plasma Sci. 37, 934 (2009).CrossRefGoogle Scholar
Żenkiewicz, M., Moraczewski, K., Richert, J., and Stepczyńska, M.: Effect of corona treatment on the mortality rate of bacterial strains. Przem. Chem. 91, 599 (2012).Google Scholar
Bitar, R., Cools, P., De Geyter, N., and Morent, R.: Atmospheric pressure plasma activation of PP films with a localized μ-plasma. Surf. Coat. Technol. 307, 1074 (2016).CrossRefGoogle Scholar
Kogelschatz, U.: Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 23, 146 (2003).CrossRefGoogle Scholar
Ren, C-S., Wang, K., Nie, Q-Y., Wang, D-Z., and Guo, S-H.: Surface modification of PE film by DBD plasma in air. Appl. Surf. Sci. 255, 3421 (2008).CrossRefGoogle Scholar
Lauer, J.L., Shohet, J.L., Albrecht, R.M., Esnault, S., Malter, J.S., von Andrian, U.H., and Shohet, S.B.: Control of uniformity of plasma-surface modification inside of small-diameter polyethylene tubing using microplasma diagnostics. IEEE Trans. Plasma Sci. 33, 791 (2005).CrossRefGoogle Scholar
Morent, R., De Geyter, N., Gengembre, L., Leys, C., Payen, E., Van Vlierberghe, S., and Schacht, E.: Surface treatment of a polypropylene film with a nitrogen DBD at medium pressure. Eur. Phys. J.: Appl. Phys. 43, 289 (2008).Google Scholar
Borcia, G., Anderson, C.A., and Brown, N.M.D.: The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I. Appl. Surf. Sci. 221, 203 (2004).CrossRefGoogle Scholar
Kostov, K.G., Nishime, T.M.C., Hein, L.R.O., and Toth, A.: Study of polypropylene surface modification by air dielectric barrier discharge operated at two different frequencies. Surf. Coat. Technol. 234, 60 (2013).CrossRefGoogle Scholar
Massines, F., Sarra-Bournet, C., Fanelli, F., Naudé, N., and Gherardi, N.: Atmospheric pressure low temperature direct plasma technology: Status and challenges for thin film deposition. Plasma Processes Polym. 9, 1041 (2012).CrossRefGoogle Scholar
Cernakova, L., Kovacik, D., Zahoranova, A., Cernak, M., and Mazur, M.: Surface modification of polypropylene non-woven fabrics by atmosperic-pressure plasma activation followed by acrylic acid grafting. Plasma Chem. Plasma Process. 25, 427 (2005).CrossRefGoogle Scholar
Morent, R., De Geyter, N., Leys, C., Gengembre, L., and Payen, E.: Plasma treatment of polycaprolactone at medium pressure. Surf. Interface Anal. 40, 597 (2008).CrossRefGoogle Scholar
Grundmeier, G., von Keudell, A., and de los Arcos, T.: Review: Fundamentals and applications of reflection FTIR spectroscopy for the analysis of plasma processes at materials interfaces. Plasma Processes Polym. 12, 926 (2015).CrossRefGoogle Scholar
Moraczewski, K., Stepczyńska, M., Malinowski, R., Rytlewski, P., Jagodziński, B., and Żenkiewicz, M.: Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers. Appl. Surf. Sci. 377, 228 (2016).CrossRefGoogle Scholar
Rezaei, F., Dickey, M.D., Bourham, M., and Hauser, P.J.: Surface modification of PET film via a large area atmospheric pressure plasma: An optical analysis of the plasma and surface characterization of the polymer film. Surf. Coat. Technol. 309, 371 (2017).CrossRefGoogle Scholar
Akishev, Y., Grushin, M., Dyatko, N., Kochetov, I., Napartovich, A., Trushkin, N., Duc, T.M., and Descours, S.: Studies on cold plasma–polymer surface interaction by example of PP- and PET-films. J. Phys. D Appl. Phys. 41, 235203 (2008).CrossRefGoogle Scholar
Chen, F., Liu, S., Liu, J., Huang, S., Xia, G., Song, J., Xu, W., Sun, J., and Liu, X.: Surface modification of tube inner wall by transferred atmospheric pressure plasma. Appl. Surf. Sci. 389, 967 (2016).CrossRefGoogle Scholar
Novak, I., Steviar, M., Popelka, A., Chodák, I., Mosnacek, J., Špírková, M., Janigová, I., Kleinoav, A., Sediacik, J., and Slouf, M.: Adhesive properties of polyester treated by cold plasma in oxygen and nitrogen atmospheres. Polym. Eng. Sci. 53, 516 (2013).Google Scholar
Chiper, A.S., Nastuta, A.V., Rusu, G.B., and Popa, G.: On surface elementary processes and polymer surface modifications induced by double pulsed dielectric barrier discharge. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 313 (2009).CrossRefGoogle Scholar
Švorčík, V., Kolarova, K., Slepicka, P., Mackova, A., Novotna, M., and Hnatowicz, V.: Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym. Degrad. Stab. 91, 1219 (2006).CrossRefGoogle Scholar
Massines, F. and Gouda, G.: A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure. J. Phys. D: Appl. Phys. 31, 3411 (1998).CrossRefGoogle Scholar
Onyshchenko, I., De Geyter, N., Nikiforov, A.Y., and Morent, R.: Atmospheric pressure plasma penetration inside flexible polymeric tubes. Plasma Processes Polym. 12, 271 (2015).CrossRefGoogle Scholar
Cao, L., Sukavaneshvar, S., Ratner, B.D., and Horbett, T.A.: Glow discharge plasma treatment of polyethylene tubing with tetraglyme results in ultralow fibrinogen adsorption and greatly reduced platelet adhesion. J. Biomed. Mater. Res. 79, 788 (2006).CrossRefGoogle ScholarPubMed
Abourayana, H.M., Milosavljevic, V., Dobbyn, P., and Dowling, D.P.: Evaluation of the effect of plasma treatment frequency on the activation of polymer particles. Plasma Chem. Plasma Process. 37, 1223 (2017).CrossRefGoogle Scholar
Van Deynse, A., Morent, R., Leys, C., and De Geyter, N.: Influence of ethanol vapor addition on the surface modification of polyethylene in a dielectric barrier discharge. Appl. Surf. Sci. 419, 847 (2017).CrossRefGoogle Scholar
Hetemi, D. and Pinson, J.: Surface functionalisation of polymers. Chem. Soc. Rev. 46, 5701 (2017).CrossRefGoogle ScholarPubMed
Mittal, K.L.: Progress in Adhesion and Adhesives (Wiley-Scrivener Publishing, Beverly, MA, 2015); p. 299.CrossRefGoogle Scholar