Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T09:04:34.198Z Has data issue: false hasContentIssue false

Mixed phase ytterbium silicate environmental-barrier coating materials for improved calcium–magnesium–alumino-silicate resistance

Published online by Cambridge University Press:  06 July 2020

Rebekah I. Webster*
Affiliation:
Materials Science and Engineering Department, University of Virginia, Charlottesville, Virginia22903, USA
Elizabeth J. Opila
Affiliation:
Materials Science and Engineering Department, University of Virginia, Charlottesville, Virginia22903, USA
*
a)Address all correspondence to this author. e-mail: riw5pv@virginia.edu
Get access

Abstract

Calcium–magnesium–alumino-silicate (CMAS) reaction and infiltration behavior were studied in phase pure and mixed phase ytterbium silicate environmental-barrier coating (EBC) materials at 1300 °C. Phase pure Yb2Si2O7 (YbDS) was infiltrated by CMAS via grain boundaries/pores, resulting in loss of its structural integrity. Phase pure Yb2SiO5 (YbMS) reacted with CMAS to form either apatite (Ca2Yb8(SiO4)6O2) or YbDS, depending on the initial glass composition. Both reactions in YbMS slowed infiltration kinetics considerably compared to YbDS. Samples having a YbDS matrix with controlled amounts and dispersions of YbMS were also investigated as a model for air plasma spray coatings. Samples containing ≥20 vol% coarse YbMS showed dramatically improved infiltration behavior compared to phase pure YbDS. YbDS samples containing a fine dispersion of YbMS displayed a new mode of CMAS attack in which glass spread on the sample surfaces. The results of this study suggest that EBC phase compositions and microstructures may be tailored for optimized CMAS resistance.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Padture, N.P.: Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804809 (2016).10.1038/nmat4687CrossRefGoogle ScholarPubMed
Zok, F.W.: Ceramic-matrix composites enable revolutionary gains in turbine engine efficiency. Am. Ceram. Soc. Bull. 95, 2228 (2016).Google Scholar
Steibel, J.: Ceramic matrix composites taking flight at GE aviation. Am. Ceram. Soc. Bull. 98, 3033 (2019).Google Scholar
Opila, E.J. and Hann, R.E.: Paralinear oxidation of CVD SiC in water vapor. J. Am. Ceram. Soc. 80, 197205 (1997).10.1111/j.1151-2916.1997.tb02810.xCrossRefGoogle Scholar
Lee, K.N.: Current status of environmental barrier coatings for Si-based ceramics. Surf. Coat. Technol. 133–134, 17 (2000).Google Scholar
Fernández-Carrión, A.J., Allix, M., and Becerro, A.I.: Thermal expansion of rare-earth pyrosilicates. J. Am. Ceram. Soc. 96, 22982305 (2013).10.1111/jace.12388CrossRefGoogle Scholar
Costa, G.C.C. and Jacobson, N.S.: Mass spectrometric measurements of the silica activity in the Yb2O3 SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments. J. Eur. Ceram. Soc. 35, 42594267 (2015).10.1016/j.jeurceramsoc.2015.07.019CrossRefGoogle Scholar
Lee, K.N., Fox, D.S., and Bansal, N.P.: Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25, 17051715 (2005).10.1016/j.jeurceramsoc.2004.12.013CrossRefGoogle Scholar
Poerschke, D.L., Jackson, R.W., and Levi, C.G.: Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions. Annu. Rev. Mater. Res. 47, 297330 (2017).10.1146/annurev-matsci-010917-105000CrossRefGoogle Scholar
Levi, C.G., Hutchinson, J.W., Vidal-Sétif, M.-H., and Johnson, C.A.: Environmental degradation of thermal barrier coatings by molten deposits. MRS Bull. 37, 932941 (2012).10.1557/mrs.2012.230CrossRefGoogle Scholar
Richards, B.T., Zhao, H., and Wadley, H.N.G.: Structure, composition, and defect control during plasma spray deposition of ytterbium silicate coatings. J. Mater. Sci. 50, 79397957 (2015).10.1007/s10853-015-9358-5CrossRefGoogle Scholar
Krämer, S., Yang, J., and Levi, C.G.: Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J. Am. Ceram. Soc. 91, 576583 (2008).10.1111/j.1551-2916.2007.02175.xCrossRefGoogle Scholar
Jang, B.-K., Feng, F.-J., Suzuta, K., Tanaka, H., Matsushita, Y., Lee, K.-S., and Ueno, S.: Corrosion behavior of volcanic ash and calcium magnesium aluminosilicate on Yb2SiO5 environmental barrier coatings. J. Ceram. Soc. Jpn. 125, 326332 (2017).CrossRefGoogle Scholar
Turcer, L.R., Krause, A.R., Garces, H.F., Zhang, L., and Padture, N.P.: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7. J. Eur. Ceram. Soc. 38, 39143924 (2018).10.1016/j.jeurceramsoc.2018.03.010CrossRefGoogle Scholar
Tian, Z., Zhang, J., Zheng, L., Hu, W., Ren, X., Lei, Y., and Wang, J.: General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300°C. Corros. Sci. 148, 281292 (2019).10.1016/j.corsci.2018.12.032CrossRefGoogle Scholar
Jiang, F., Cheng, L., and Wang, Y.: Hot corrosion of RE2SiO5 with different cation substitution under calcium–magnesium–aluminosilicate attack. Ceram. Int. 43, 90199023 (2017).CrossRefGoogle Scholar
Tian, Z., Ren, X., Lei, Y., Zheng, L., Geng, W., Zhang, J., and Wang, J.: Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. J. Eur. Ceram. Soc. 39, 42454254 (2019).10.1016/j.jeurceramsoc.2019.05.036CrossRefGoogle Scholar
Stolzenburg, F., Johnson, M.T., Lee, K.N., Jacobson, N.S., and Faber, K.T.: The interaction of calcium–magnesium–aluminosilicate with ytterbium silicate environmental barrier materials. Surf. Coat. Technol. 284, 4450 (2015).CrossRefGoogle Scholar
Ahlborg, N.L., and Zhu, D.: Calcium–magnesium–aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surf. Coat. Technol. 237, 7987 (2013).10.1016/j.surfcoat.2013.08.036CrossRefGoogle Scholar
Stokes, J.L., Harder, B.J., Wiesner, V.L., and Wolfe, D.E.: High-temperature thermochemical interactions of molten silicates with Yb2Si2O7 and Y2Si2O7 environmental barrier coating materials. J. Eur. Ceram. Soc. 39, 50595067 (2019).10.1016/j.jeurceramsoc.2019.06.051CrossRefGoogle Scholar
Liu, J., Zhang, L., Liu, Q., Cheng, L., and Wang, Y.: Calcium–magnesium–aluminosilicate corrosion behaviors of rare-earth disilicates at 1400°C. J. Eur. Ceram. Soc. 33, 34193428 (2013).CrossRefGoogle Scholar
Zhao, H., Richards, B.T., Levi, C.G., and Wadley, H.N.G.: Molten silicate reactions with plasma sprayed ytterbium silicate coatings. Surf. Coat. Technol. 288, 151162 (2016).CrossRefGoogle Scholar
Poerschke, D.L., Shaw, J.H., Verma, N., Zok, F.W., and Levi, C.G.: Interaction of yttrium disilicate environmental barrier coatings with calcium-magnesium-iron alumino-silicate melts. Acta Mater. 145, 451461 (2018).10.1016/j.actamat.2017.12.004CrossRefGoogle Scholar
Summers, W.D., Poerschke, D.L., Park, D., Shaw, J.H., Zok, F.W., and Levi, C.G.: Roles of composition and temperature in silicate deposit-induced recession of yttrium disilicate. Acta Mater. 160, 3446 (2018).CrossRefGoogle Scholar
Costa, G., Harder, B.J., Wiesner, V.L., Zhu, D., Bansal, N., Lee, K.N., Jacobson, N.S., Kapush, D., Ushakov, S.V., and Navrotsky, A.: Thermodynamics of reaction between gas turbine ceramic coatings and ingested CMAS corrodents. J. Am. Ceram. Soc. 102, 29482964 (2019).Google Scholar
Summers, W.D., Poerschke, D.L., Taylor, A.A., Ericks, A.R., Levi, C.G., and Zok, F.W.: Reactions of molten silicate deposits with yttrium monosilicate. J. Am. Ceram. Soc. 103, 29192932 (2020).CrossRefGoogle Scholar
Dong, W., Jain, H., and Harmer, M.P.: Liquid phase sintering of alumina, II. Penetration of liquid phase into model microstructures. J. Am. Ceram. Soc. 88, 17081713 (2005).10.1111/j.1551-2916.2005.00148.xCrossRefGoogle Scholar
Ahrens, L.H.: The use of ionization potentials Part 1. Ionic radii of the elements. Geochim. Cosmochim. Acta 2, 155169 (1952).CrossRefGoogle Scholar
Stokes, J.L., Harder, B.J., Wiesner, V.L., and Wolfe, D.E.: Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials. J. Am. Ceram. Soc. 103, 622634 (2020).CrossRefGoogle Scholar
Bale, C.W., Bélisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Hack, K., Jung, I.-H., Kang, Y.-B., Melanҫon, J., Pelton, A.D., Robelin, C., and Petersen, S.: FactSage thermochemical software and databases – Recent developments. Calphad 33, 295311 (2009).10.1016/j.calphad.2008.09.009CrossRefGoogle Scholar
Webster, R.I., and Opila, E.J.: Experimental viscosity of CMAS melts as a function of composition and temperature. International Conference and Expo on Advanced Ceramics and Composites, Daytona Beach, FL, USA, 2020.Google Scholar
Eustathopoulos, N., Nicholas, M.G., Drevet, B., and Drevet, B.: Wettability at High Temperatures (Pergamon-Elsevier Science Ltd., Oxford, UK, 1999).Google Scholar
Cassie, A.B.D. and Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551 (1944).CrossRefGoogle Scholar
Shaw, D.J.: Introduction to Colloid and Surface Chemistry (Butterworth Heinemann, Oxford, UK, 1966).Google Scholar
Young, T.: An essay on the cohesion of fluids. Phil. Trans. R. Soc. 95, 6587 (1805).Google Scholar
Ridley, M., Gaskins, J., Hopkins, P., and Opila, E.J.: Tailoring thermal properties of multi-component rare earth monosilicates. Acta Mater. (2020). Accepted. DOI: 10.1016/j.actamat.2020.06.012.10.1016/j.actamat.2020.06.012CrossRefGoogle Scholar
Hopkins, R.H., de Klerk, J., Piotrowski, P., Walker, M.S., and Mathur, M.P.: Thermal and elastic properties of silicate oxyapatite crystals. J. Appl. Phys. 44, 24562458 (1973).CrossRefGoogle Scholar
Key, T.S., Presley, K.F., Hay, R.S., and Boakye, E.E.: Total thermal expansion coefficients of the yttrium silicate apatite phase Y4.69(SiO4)3O. J. Am. Ceram. Soc. 97(1), 2831 (2014).10.1111/jace.12619CrossRefGoogle Scholar
Supplementary material: File

Webster and Opila supplementary material

Webster and Opila supplementary material

Download Webster and Opila supplementary material(File)
File 769.2 KB