Published online by Cambridge University Press: 03 March 2011
We present results of atom superposition and electron delocalization molecular orbital (ASED-MO) calculations of interactions of interstitial H with substitutional B and N in diamond. Nearest-neighbor and next-nearest-neighbor C atoms were relaxed in geometry depending on the cluster size, XC34H36 or XC70H60, respectively, where X = B or N and the H atoms saturate the surface dangling radical orbitals of the models. A small Jahn-Teller distortion occurs for interstitial B, a shallow acceptor which, in the B− state, sits in a tetrahedral lattice site. For interstitial N distortions are large, with a long C-N distance which stabilizes a ŝ∗ orbital that would otherwise be in the conduction band. This orbital has one electron in it and has its greatest amplitude on C; the bonding counterpart has its greatest amplitude on N and is similar to the N lone-pair orbital in amines. The calculations indicate that N is a deep donor and N+ relaxes to the tetrahedral lattice site. Interstitial H is a mid-band-gap donor and is possibly also an acceptor with a high 1.9 eV calculated activation energy barrier to migration. Interstitial H+ is expected to be very mobile, with a migration barrier of 0.1 eV. H− is predicted to be relatively immobile with an activation barrier for migration of 2.5 eV. The mobility of bond-inserted H around B in BH pairs should be high, with a calculated activation energy of 0.13 eV, but for N the comparable process has an activation energy of 2.50 eV. In NH pairs the interstitial H has formed a bond with the radical orbital on the C, so donation would be from the lone-pair orbital on N, which lies deep in the band gap; hence, the donor property is passivated.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.