Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T02:50:51.899Z Has data issue: false hasContentIssue false

Microstructure- and property-controllable NdAlNiCuFe alloys by varying Fe content

Published online by Cambridge University Press:  03 March 2011

Z. Zhang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
D.Q. Zhao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
W.H. Wang*
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
*
a) Address all correspondence to this author. e-mail: whw@aphy.iphy.ac.cn
Get access

Abstract

We report the formation of microstructure- and property-controllable Nd60Al10Ni10Cu20−xFex (0 ≤ x ≤ 20) alloys by varying the content of Fe element. The microstructure of the Nd-based alloy can be changed progressively from a full glassy state into a composite state with nanocrystalline particles in the glassy matrix and, finally, into a nanostructured state, accompanied by variation in magnetic property gradually from paramagnetic to hard magnetic. The role of Fe addition in the control of microstructure and magnetic property is clarified. We expect that the results would have implication in the development of the microstructure- and property-controllable functional materials for various applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, W.L.: Bulk glass-forming metallic alloys: Sciences and technology. MRS Bull. 24(10),24 (1999).CrossRefGoogle Scholar
2.Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R. 44, 45 (2004).CrossRefGoogle Scholar
3.Guo, W.H., Chua, F.F., Leung, C.C. and Kui, H.W.: Formation of bulk nanostructured materials by rapid solidification. J. Mater. Res. 15, 1605 (2000).CrossRefGoogle Scholar
4.Guo, W.H. and Kui, H.W.: Bulk nanostructured alloy formation with controllable grain size. Acta Mater. 48, 2117 (2000).CrossRefGoogle Scholar
5.Liu, W. and Johnson, W.L.: Precipitation of bcc nanocrystals in bulk Mg-Cu-Y amorphous alloys. J. Mater. Res. 11, 2388 (1996).CrossRefGoogle Scholar
6.Wang, W.H., Wang, R.J., Yang, W.T., Zhao, D.Q. and Pan, M.X.: Stability of supercooled liquid state of ZrTiCuNiBe bulk metallic glass forming alloy. J. Mater. Res. 17, 1385 (2002).CrossRefGoogle Scholar
7.Wang, W.H., He, D.W., Zhao, D.Q., Yao, Y.S. and He, M.: Nanocrystallization in ZrTiCuNiBeC bulk metallic glass under high pressure. Appl. Phys. Lett. 75, 2770 (1999).CrossRefGoogle Scholar
8.He, Y., Price, C.E. and Poon, S.J.: Formation of Nd-based metallic glasses. Philos. Mag. Lett. 70, 371 (1994).CrossRefGoogle Scholar
9.Inoue, A., Takeuchi, A. and Zhang, T.: Bulk glass forming based on rare earth elements. Metall. Mater. Trans. 29A, 1779 (1998).CrossRefGoogle Scholar
10.Fan, G.J., Löser, W., Roth, S. and Eckert, J.: Glass-forming ability of RE–Al–TM alloys (RE = Sm, Y; TM = Fe, Co, Cu). Acta. Mater. 48, 3823 (2000).CrossRefGoogle Scholar
11.Wei, B.C., Wang, W.H., Pan, M.X., Han, B.S. and Hu, W.R.: Nd65Al10Fe25-xCox bulk metallic glasses with wide supercooled liquid regions. Phys. Rev. B. 64, 012406 (2001).CrossRefGoogle Scholar
12.Zhao, Z.F., Zhang, Z., Wen, P., Pan, M.X., Zhao, D.Q., Zhang, Z. and Wang, W.H.: Highly glass forming alloy with very low glass transition temperature. Appl. Phys. Lett. 82, 4699 (2003).CrossRefGoogle Scholar
13.Wang, W.H., Wei, Q. and Bai, H.Y.: Enhanced thermal stability and microhardness in metallic glass ZrTiCuNiBe alloys by carbon addition. Appl. Phys. Lett. 71, 58 (1997).CrossRefGoogle Scholar
14.Bian, Z., Wang, R.J., Pan, M.X., Zhao, D.Q. and Wang, W.H.: Excellent wave absorption ability of Zr-based bulk metallic glass composites containing carbon nanotubes. Adv. Mater. 15, 616 (2003).CrossRefGoogle Scholar
15.Wang, W.H., Bian, Z., Wen, P., Zhang, Y. and Pan, M.X.: Role of addition in formation and properties of Zr-based bulk metallic glasses. Intermetallics 10, 1249 (2002).CrossRefGoogle Scholar
16.Zhang, Y., Zhao, D.Q. and Wang, W.H.: Formation ZrNiCuAl bulk metallic glasses with low purity elements. Mater. Trans. 41, 1410 (2000).CrossRefGoogle Scholar
17.Wang, W.H., Wang, R.J., Fan, G.J. and Eckert, J.: Formation and properties of Zr-(Ti, Nb)-Cu-Ni-Al bulk metallic glasses. Mater. Trans. 42, 587 (2001).CrossRefGoogle Scholar
18.Hu, Y., Pan, M.X., Liu, L. and Wang, W.H.: Synthesis of Fe-based bulk metallic glasses with low purity materials by multi-metalloids addition. Mater. Lett. 57, 2698 (2003).CrossRefGoogle Scholar
19.Wang, W.H., Pan, M.X., Zhao, D.Q. and Bai, H.Y.: Enhance soft magnetic properties of FeCoZrMoWB bulk metallic glass by microalloying. J. Phys.: Condens. Matter 16, 3719 (2004).Google Scholar
20.Zhao, Z.G., de Boer, F.R. and Buschow, K.H.L.: Magnetic properties of R6Fe11A13 and R6Fe12A12 compounds with R = Pr, Nd. J. Alloys and Compd. 239, 147 (1996).CrossRefGoogle Scholar
21.Grieb, B. and Henig, E.: The ternary NdAlFe system. Z. Metallkede 82, 560 (1991).Google Scholar
22.Zhao, D.Q., Wang, W.H.: Melting and crystallization of Nd60A110Fe20Co10 bulk metallic glass under high pressure. J. Phys.: Condens. Matter 15, L749 (2003).Google Scholar
23.Wang, W.H., Li, L.L., Pan, M.X. and Wang, R.J.: Characteristics of glass transition and supercooled liquid state of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass. Phys. Rev. B 63, 052204 (2001).CrossRefGoogle Scholar
24.Libera, M. and Chen, M.: Phase change erasable optical storage. MRS Bull. 15, 40 (1990).CrossRefGoogle Scholar
25.Fecht, H.J.: Thermodynamic properties of amorphous solids—glass formation and glass transition. Mater. Trans. JIM 36, 777 (1995).CrossRefGoogle Scholar
26.Zhang, Z., Xia, L., Wei, B.C., Zhao, D.Q., Pan, M.X. and Wang, W.H.: Structural evolution and property changes in Nd60Al10Fe20Co10 bulk metallic glass during crystallization. Appl. Phys. Lett. 81, 4371 (2002).CrossRefGoogle Scholar
27.Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
28.Greer, A.L.: Confusion by design. Nature 366, 303 (1993).CrossRefGoogle Scholar
29.Sun, Z.G., Löser, W., Eckert, J. and Schultz, L.: Phase separation in Nd60–xYxFe30Al10 melt-spun ribbons. Appl. Phys. Lett. 80, 772 (2002).CrossRefGoogle Scholar
30.De Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R. and Niessen, A.K.: Cohesion in Metals (North-Holland, Amsterdam, 1988).Google Scholar
31.Delamare, J., Lemarchand, D. and Vigier, P.J.: Structural investigation of the metastable compound A1 in an as-cast Fe–Nd eutectic alloy. J. Alloys Compd. 216, 273 (1994).CrossRefGoogle Scholar
32.Menushenkov, V.P., Lileev, A.S., Oreshkin, M.A. and Zhuravlev, S.A.: Metastable nanocrystalline A1 phase and coercivity in Fe–Nd alloys. J Magn. Magn. Mater. 203, 149 (1999).CrossRefGoogle Scholar
33.Fan, G.J., Löser, W., Roth, S., Eckert, J. and Schultz, L.: Magnetic properties of cast Nd60–xFe20Al10Co10Cux alloys. Appl. Phys. Lett. 75, 2984 (1999).CrossRefGoogle Scholar
34.Kramer, M.J., O’Connor, A.S., Dennis, K.W., McCallum, R.W., Lewis, L.H., Tung, L.D. and Duong, N.P.: The origins of coercivity in the amorphous alloy NdFeAl. IEEE Trans. Magn. 37, 2497 (2001).CrossRefGoogle Scholar
35.Betancourt, I. and Valenzuela, R.: The role of cluster formation on the magnetic properties of NdAlFe-based magnetic alloys. J. Mater. Res. 27, 427 (2003).Google Scholar
36.Kumar, G., Eckert, J., Roth, S., Stefan, W., Löser, W. and Schultz, L.: Structural and magnetic properties of as-cast Nd-(Fe,Co)-Al alloys (Annales de Chimie, Paris, France),27, 41 (2002).Google Scholar