Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T00:37:14.710Z Has data issue: false hasContentIssue false

Microstructure and Homogeneity of Nanocrystalline Co–Cu Supersaturated Solid Solutions Prepared by Mechanical Alloying

Published online by Cambridge University Press:  31 January 2011

J. Y. Huang
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
Y. D. Yu
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
Y. K. Wu
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
D. X. Li
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
H. Q. Ye
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
Get access

Abstract

Mechanical alloying (MA) has been performed in the CoxCu(100-x) (x = 10, 25, 50, 60, 75, and 90) system. High resolution electron microscopy (HREM) and field emission gun transmission electron microscopy (FEG TEM) were used to characterize the microstructure and homogeneity of the nanocrystalline Co25Cu75 solid solution. After 20 h of MA, all the mixtures show an entirely face-centered cubic (fcc) phase. HREM shows that the ultrafine-grained (UFG) materials prepared by MA contain a high density of defects. Two kinds of typical defects in UFG Co25Cu75 are deformation twins and dislocations. The dislocations are mostly 60° type, and in many cases they dissociate into 30° and 90° partials. The grain boundaries are ordered in structure, curved, and slightly strained, which is similar to that observed in NC–Pd. Nanoscale energy dispersive x-ray spectroscopy (EDXS) shows that the Co concentration in both the interior of grains and the GB's is close to the global composition, which proves that supersaturated solid solutions are indeed formed. In the meantime EDXS revealed that the mixing of Co and Cu in the solid solutions is homogeneous at nanometer scale. MA in the Co–Cu system is suggested to be a diffusion-controlled process, and stress-stimulated diffusion is proposed to be the reason for the formation of supersaturated solid solutions in this immiscible system.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Uenish, K., Kobayashi, K. F., Nasu, S., Hatano, H., Ishihara, K. N., and Shingu, P. H., Z. Metallkd. 82, 132 (1992).Google Scholar
2.Yavari, A. R., Desré, P. J., and Benameur, T., Phys. Rev. Lett. 68, 2235 (1992).CrossRefGoogle Scholar
3.Eckert, J., Holzer, J. C., Krill, C. E., and Jonson, W. L., J. Appl. Phys. 73, 2794 (1993).CrossRefGoogle Scholar
4.Huang, J. Y., He, A. Q., and Wu, Y. K., Nanostruc. Mater. 4, 1 (1994).CrossRefGoogle Scholar
5.Ma, E. and Atzmon, M., Mater. Chem. Phys. 39, 249 (1995).CrossRefGoogle Scholar
6.Cabañas-Moreno, J. G., Lopez, V. M., Calderon, H. A., and Rendon-Angels, J. C., Scripta Metall. 28, 645 (1993).CrossRefGoogle Scholar
7.Gente, C., Oehring, M., and Bormann, R., Phys. Rev. B 48, 13244 (1993).CrossRefGoogle Scholar
8.Baricco, M. B., Cowlam, N., Schiffini, L., Marci, P. P., Frattini, R., and Enzo, S., Philos. Mag. B 68, 957 (1993).CrossRefGoogle Scholar
9.Huang, J. Y., Wu, Y. K., He, A.Q., and He, H. Q., Nanostruc. Mater. 4, 293 (1994).CrossRefGoogle Scholar
10.Marci, P. P., Enzo, S., Cowlam, N., Frattini, R., Principi, G., and Hu, W. X., Philos. Mag. B 71, 249 (1995).Google Scholar
11.Cardellini, F. and Mazzone, G., Philos. Mag. A 67, 1289 (1993).CrossRefGoogle Scholar
12.Huang, J. Y., Wu, Y. K., and Ye, H. Q., Appl. Phys. Lett. 66, 308 (1995).CrossRefGoogle Scholar
13.Huang, J. Y., Wu, Y. K., and Ye, H. Q., Acta Mater. 44, 1201 (1996).CrossRefGoogle Scholar
14.Huang, J. Y., Wu, Y. K., and Ye, H. Q., Acta Mater. 44, 1211 (1996); Mater. Sci. Eng. A 199, 165 (1995).CrossRefGoogle Scholar
15.Huang, J. Y., Yu, Y. D., Wu, Y.K., and Ye, H. Q., Acta Mater. 45, 113 (1997).CrossRefGoogle Scholar
16.Thomas, G., Siegel, R. W., and Eastman, J. A., Scripta Metall. Mater. 24, 201 (1990).CrossRefGoogle Scholar
17.Wunderlich, W., Ishida, Y., and Maurer, R., Scripta Metall. Mater. 24, 403 (1990).CrossRefGoogle Scholar
18.Li, D. X., Ping, D. H., Ye, H. Q., Qin, X. Y., and Wu, X. J., Mater. Lett. 18, 29 (1993).CrossRefGoogle Scholar
19.Michaelsen, C., Philos. Mag. A 72, 813 (1995).CrossRefGoogle Scholar
20.Sui, H. X., Zhu, M., Qi, M., Li, G. B., and Yang, D. Z., J. Appl. Phys. 71, 2945 (1992).CrossRefGoogle Scholar
21.Valiev, R. Z., Korznikov, A. V., and Mulyukov, R. R., Mater. Sci. Eng. A 168, 141 (1993).CrossRefGoogle Scholar
22.Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L., Metall. Trans. A 21, 2333 (1990).CrossRefGoogle Scholar
23.Rigney, D. A., Chen, L. H., Naylor, M. G. S., and Rosenfield, A. R., Wear, 195 (1984).CrossRefGoogle Scholar
24.Ganapathi, S. K. and Rigney, D. A., Scripta Metall. Mater. 24, 165 (1990).CrossRefGoogle Scholar