Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T00:14:47.211Z Has data issue: false hasContentIssue false

Microstructural refinement and deformation twinning during severe plastic deformation of 316L stainless steel at high temperatures

Published online by Cambridge University Press:  03 March 2011

G.G. Yapici
Affiliation:
Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843
I. Karaman*
Affiliation:
Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843
Z.P. Luo
Affiliation:
Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843
H.J. Maier
Affiliation:
Lehrstuhl für Werkstoffkunde, University of Paderborn, 33095 Paderborn, Germany
Y.I. Chumlyakov
Affiliation:
Siberian Physical-Technical Institute, Tomsk, 634050, Russia
*
a) Address all correspondence to this author. e-mail: ikaraman@mengr.tamu.edu
Get access

Abstract

The present work focuses on the severe plastic deformation and deformation twinning of 316L austenitic stainless steel deformed at high temperatures (700 and 800 °C) using equal channel angular extrusion (ECAE). Very high tensile and compressive strength levels were obtained after ECAE without sacrificing toughness with relation to microstructural refinement and deformation twinning. The occurrence of deformation twinning at such high temperatures was attributed to the effect of high stress levels on the partial dislocation separation, i.e., effective stacking fault energy. High stress levels were ascribed to the combined effect of dynamic strain aging, high strain levels (∈ ∼ 1.16) and relatively high strain rate (2 s−1). At 800 °C, dynamic recovery and recrystallization took place locally leading to grains with fewer dislocation density and recrystallized grains, which in turn led to lower room temperature flow strengths than those from the samples processed at 700 °C but higher strain hardening rates. Apparent tension-compression asymmetry in the 700 °C sample was found to be the consequence of the directional internal stresses.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Simmons, J.W.: High-nitrogen alloying of stainless steels. Mater. Sci. Eng. A 207, 159 (1996).CrossRefGoogle Scholar
2.Tsakiris, V. and Edmonds, D.V.: Martensite and deformation twinning in austenitic steels. Mater. Sci. Eng. A 273, 430 (1999).CrossRefGoogle Scholar
3.Karaman, I., Sehitoglu, H., Maier, H.J. and Chumlyakov, Y.I.: Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen. Acta Mater. 49, 3919 (2001).CrossRefGoogle Scholar
4.Karaman, I., Gall, K., Sehitoglu, H., Chumlyakov, Y.I. and Maier, H.J.: Deformation of single crystal Hadfield steel by twinning and slip. Acta Mater. 48, 1345 (2000).CrossRefGoogle Scholar
5.Karaman, I., Sehitoglu, H., Beaudoin, A.J., Maier, H.J., Chumlyakov, Y.I. and Tome, C.N.: Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip. Acta Mater. 48, 2031 (2000).CrossRefGoogle Scholar
6.Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
7.Karaman, I., Sehitoglu, H., Chumlyakov, Y.I., Maier, H.J. and Kireeva, I.V.: The Effect of Twinning and Slip on the Bauschinger Effect of Hadfield Steel Single Crystals. Metall. Mater. Trans. A 32, 695 (2001).CrossRefGoogle Scholar
8.Karaman, I., Sehitoglu, H., Chumlyakov, Y.I., Maier, H.J. and Kireeva, I.V.: Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals. Scripta Mater. 44, 337 (2001).CrossRefGoogle Scholar
9.Karaman, I., Sehitoglu, H., Chumlyakov, Y.I. and Maier, H.J.: The Deformation of Low-Stacking-Fault-Energy Austenitic Steels. JOM 54, 31 (2002).CrossRefGoogle Scholar
10.Peng, R.L., Oden, M., Wang, Y.D. and Johansson, S.: Intergranular strains and plastic deformation of an austenitic stainless steel. Mater. Sci. Eng. A 334, 215 (2002).CrossRefGoogle Scholar
11.Narita, N. and Takamura, J.Deformation twinning in silver-alloy and copper-alloy crystals. in Dislocations in Solids, edited by Nabarro, F.R.N., 1992, vol. 9, p. 135.Google Scholar
12.Yakubtsov, I.A., Ariapour, A. and Perovic, D.D.: Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys. Acta Mater. 47, 1271 (1999).CrossRefGoogle Scholar
13.Fujita, M., Kaneko, Y., Nohara, A., Saka, H., Zauter, R. and Mughrabi, H.: Temperature dependence of the dissociation width of dislocations in a commercial 304L stainless steel. ISIJ Int. 34, 697 (1994).CrossRefGoogle Scholar
14.Chumlyakov, Y.I., Kireeva, I.V., Korotaev, A.D. and Aparova, L.S.: Plastic deformation of single crystals of austenitic stainless steel single crystal strengthened by nitrogen. 2. Orientation dependence of deformational strengthening coefficient. Phy. Met. Metall. 75, 218 (1993).Google Scholar
15.Chumlyakov, Y.I., Kireeva, I.V. and Korotaev, A.D.: Plastic deformation of austenitic stainless steel single crystal strengthened by nitrogen. Phy. Met. Metall. 73, 429 (1992).Google Scholar
16.Chumlyakov, Y.I., Kireeva, I.V. and Ivanova, O.V.: Plastical deformation of single crystals of austenitic stainless steel strengthened by nitrogen. 3. Asymmetry and orientational dependence of critical shearing stresses in steels with different stacking fault energies. Phy. Met. Metall. 78, 350 (1994).Google Scholar
17.Byun, T.S.: On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Mater. 51, 3063 (2003).CrossRefGoogle Scholar
18.Lee, E.H., Byun, T.S., Hunn, J.D., Yoo, M.H., Farrell, K. and Mansur, L.K.: On the origin of deformation microstructure in austenitic stainless steel: part I—microstructures. Acta Mater. 49, 3269 (2001).CrossRefGoogle Scholar
19.Lee, E.H., Yoo, M.H., Byun, T.S., Hunn, J.D., Farrell, K. and Mansur, L.K.: On the origin of deformation microstructures in austenitic stainless steel: Part II—Mechanisms. Acta Mater. 49, 3277 (2001).CrossRefGoogle Scholar
20.Lee, E.H., Byun, T.S., Hunn, J.D., Farrell, K. and Mansur, L.K.: Origin of hardening and deformation mechanisms in irradiated 316 LN austenitic stainless steel. J. Nucl. Mater. 296, 183 (2001).CrossRefGoogle Scholar
21.Byun, T.S., Farrell, K., Lee, E.H., Hunn, J.D. and Mansur, L.K.: Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation. J. Nucl. Mater. 298, 269 (2001).CrossRefGoogle Scholar
22.Peng, R.L., Oden, M., Wang, Y.D. and Johansson, S.: Intergranular strains and plastic deformation of an austenitic stainless steel. Mater. Sci. Eng. A. 334, 215 (2002).CrossRefGoogle Scholar
23.Almeida, L.H., May, I.L. and Emygdio, P.R.: Mechanistic Modeling of Dynamic Strain Aging in Austenitic Stainless Steels. Mater. Charac. 41, 137 (1998).CrossRefGoogle Scholar
24.Puchi-Cabrera, E.S.: High temperature deformation of 316L stainless steel. Mater. Sci. Technol. 17, 155 (2001).CrossRefGoogle Scholar
25.Cho, S.H., Yoo, Y.C. and Jonas, J.J.: Static and dynamic strain aging in 304 austenitic stainless steel at elevated temperatures. J. Mater. Sci. Lett. 19, 2019 (2000).CrossRefGoogle Scholar
26.Samuel, K.G., Mannan, S.L. and Rodriguez, P.: Serrated yielding in AISI 316 stainless steel. Acta Metall. 36, 2323 (1988).CrossRefGoogle Scholar
27.Puchi-Cabrera, E.S.: Mechanical behaviour of 316L stainless steel under warm working conditions. Mater. Sci. Tech. 19, 189 (2003).CrossRefGoogle Scholar
28.Venugopal, S., Mannan, S.N. and Prasad, Y.V.R.K.: Optimization of cold and warm workability in stainless steel type AISI 316L using instability maps. J. Nucl. Mater. 227, 1 (1995).CrossRefGoogle Scholar
29.Venugopal, S., Mannan, S.N. and Prasad, Y.V.R.K.: Processing map for hot-working of stainless-steel type AISI-316L. Mater. Sci. Technol. 9, 899 (1993).CrossRefGoogle Scholar
30.Tsuzaki, K., Hori, T., Maki, T. and Tamura, I.: Dynamic strain aging during fatigue deformation in type 304 austenitic stainless steel. Mater. Sci. Eng. 61, 247 (1983).CrossRefGoogle Scholar
31.Sanchdev, A.K. and Shea, M.M.: Twinning in metastable Fe–Ni–C austenite during elevated temperature deformation. Mater Sci. Eng. 95, 31 (1987).CrossRefGoogle Scholar
32.Zhang, M.X. and Kelly, P.M.: Relationship between stress-induced martensitic transformation and impact toughness in low carbon austenitic steels. J. Mater. Sci. 37, 3603 (2002).CrossRefGoogle Scholar
33.Khan, Z. and Ahmed, M.: Stress-induced martensitic transformation in metastable austenitic stainless steels: Effect on fatigue crack growth rate. J. Mater. Eng. Perf. 5, 201 (1996).CrossRefGoogle Scholar
34.Feaugas, X.: On the origin of the tensile flow stress in the stainless steel AISI 316L at 300K: back stress and effective stress. Acta Mater. 47, 3617 (1999).CrossRefGoogle Scholar
35.Belyakov, A., Sakai, T. and Miura, H.: Microstructure and deformation behaviour of submicrocrystalline 304 stainless steel produced by severe plastic deformation. Mater. Sci. Eng. A. 319, 867 (2001).CrossRefGoogle Scholar
36.Dobatkin, S.V.: Grain Refinement and Phase Transformations in Al and Fe Based Alloys During Severe Plastic Deformation in Ultrafine Grained Materials II, in Ultrafine Grained Materials II, edited by Zhu, Y.T., Langdon, T.G., Mishra, R.S., Semiatin, S.L., Saran, M.J., and Lowe, T.C. (Proceedings of 2002 TMS Annual Meeting, TMS, Warrendale, PA, 2002), p. 183.CrossRefGoogle Scholar
37.Kashyap, B.P., McTaggart, K. and Tangri, K.: Study on the substructure evolution and flow behaviour in type 316L stainless steel over the temperature range 21–900°C. Philos. Mag. A 57, 97 (1988).CrossRefGoogle Scholar
38.Kashyap, B.P. and Tangri, K.: On the hall-petch relationship and substructural evolution in type 316L stainless steel. Acta Metall. Mat. 43, 3971 (1995).CrossRefGoogle Scholar
39.Lowe, T.C. and Valiev, R.Z.: Producing Nanoscale Microstructures through Severe Plastic Deformation. JOM 52, 27 (2000).CrossRefGoogle Scholar
40.Cornwell, L.R., Hartwig, K.T., Goforth, R.E. and Semiatin, S.L.: Erratum to the equal channel angular extrusion process for materials processing. Mater. Charac. 38, 119 (1997).Google Scholar
41.Robertson, J., Im, J-T., Karaman, I., Hartwig, K.T. and Anderson, I.E.: Consolidation of amorphous copper based powder by equal channel angular extrusion. J. Non-Cryst. Solids 317, 144 (2003).CrossRefGoogle Scholar
42.Segal, V.M.: Materials processing by simple shear. Mater Sci. Eng. A 197, 157 (1995).CrossRefGoogle Scholar
43.Kallend, J.S., Kocks, U.F., Rollett, A.D. and Wenk, R.H.: Operational texture analysis. Mater. Sci. Eng. A 132, 1 (1991).CrossRefGoogle Scholar
44.Mullner, P. and Solenthaler, C.: On the effect of deformation twinning on defect densities. Mater. Sci. Eng. A. 230, 107 (1997).CrossRefGoogle Scholar
45.Marcinkowski, M.J. and Miller, D.S.: The effect of ordering on the strength and dislocation arrangements in the Ni3Mn superlattice. Philos. Mag. 6, 871 (1961).CrossRefGoogle Scholar
46.Copley, S.M. and Kear, B.H.: The dependence of the width of a dissociated dislocation on dislocation velocity. Acta Metall. 16, 227 (1968).CrossRefGoogle Scholar
47.Goodchild, D., Roberts, W.T. and Wilson, D.V.: Plastic deformation and phase transformation in textured austenitic stainless steel. Acta Metall. 18, 1137 (1970).CrossRefGoogle Scholar
48.Fujita, M., Kaneko, Y., Nohara, A., Saka, H., Zauter, R. and Mughrabi, H.: Temperature dependence of the dissociation width of dislocations in a commercial 304L stainless steel. ISIJ J. 34, 697 (1994).CrossRefGoogle Scholar
49.Karaman, I., Sehitoglu, H., Gall, K. and Chumlyakov, Y.I.: On the deformation mechanisms in single crystal Hadfield manganese steels. Scripta Mater. 38, 1009 (1998).CrossRefGoogle Scholar
50.Chumlyakov, Y.I., Kireeva, I.V., Sehitoglu, H. and Karaman, I.: Twinning in Hadfield-Steel single crystals. Doklady Phys. 45, 101 (2000).CrossRefGoogle Scholar
51.Latanison, R.M. and Ruff, A.W.: Temperature dependence of stacking fault energy in Fe-Cr-Ni alloys. Metall. Trans. 2, 505 (1971).CrossRefGoogle Scholar
52.Lecroisey, F. and Pineau, A.: Martensitic transformations induced by plastic-deformation in Fe-Ni-Cr system. Metall. Trans. 3, 387 (1972).CrossRefGoogle Scholar
53.Kestenbach, H.J.: Effect of applied stress on partial dislocation separation and dislocation substructure in austenitic stainless-steel. Phil. Mag. 36, 1509 (1977).CrossRefGoogle Scholar
54.Monteiro, S.N. and Kestenbach, H.J.: Influence of grain orientation on the dislocation substructure in austenitic stainless steel. Metall. Trans. A 6, 938 (1975).CrossRefGoogle Scholar
55.Kim, H.S., Seo, M.H. and Hong, S.I.: Finite element analysis of equal channel angular pressing of strain rate sensitive metals. J. Mater. Process. Technol. 130, 497 (2002).CrossRefGoogle Scholar
56.Yapici, G.G., Karaman, I., Luo, Z.P. and Rack, H.: Microstructure and mechanical properties of severely deformed powder processed Ti-6Al-4V using equal channel angular extrusion. Scripta Mater. 49, 1021 (2003).CrossRefGoogle Scholar
57.Karaman, I., Karaca, H.E., Maier, H.J. and Luo, Z.P.: The Effect of Severe Marforming on Shape Memory Characteristics of a Ti-Rich NiTi Alloy Processed Using Equal Channel Angular Extrusion. Metall. Mater. Trans. A 34, 2527 (2003).CrossRefGoogle Scholar
58.DeLo, D.P. and Semiatin, S.L.: Hot Working of Ti-6Al-4V via Equal Channel Angular Extrusion. Metall. Mater. Trans. A 30, 2473 (1999).CrossRefGoogle Scholar
59.Haouaoui, M., Karaman, I., Maier, H., and Hartwig, K.T.: Microstructural evolution and mechanical behavior of bulk copper obtained by consolidation of micro- and nanopowders using equal channel angular extrusion. (2003, unpublished).CrossRefGoogle Scholar
60.Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
61.Hosford, W.F., Mechanics of Crystals and Textured Polycrystals (Oxford University Press, Oxford, U.K., 1993).Google Scholar