Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:51:45.089Z Has data issue: false hasContentIssue false

Microscale shear specimens for evaluating the shear deformation in single-crystal and nanocrystalline Cu and at Cu–Si interfaces

Published online by Cambridge University Press:  24 April 2019

Jonathan G. Gigax*
Affiliation:
Center for Integrated Technologies, MPA-CINT, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Jon K. Baldwin
Affiliation:
Center for Integrated Technologies, MPA-CINT, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Chris J. Sheehan
Affiliation:
Center for Integrated Technologies, MPA-CINT, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Stuart A. Maloy
Affiliation:
MST-8, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Nan Li
Affiliation:
Center for Integrated Technologies, MPA-CINT, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
*
a)Address all correspondence to this author. e-mail: jgigax@lanl.gov
Get access

Abstract

Microscale testing has enjoyed significant developments, with the majority of testing focused on tensile/compression type tests and little focus on shear testing. With the recent advances in macroscale shear testing, we developed a novel shear structure for evaluating shear properties of bulk materials and films at the microscale. The shear response in single-crystal copper oriented along the [111] direction was found to have a yield strength of ∼180 MPa. Nanocrystalline copper specimens with different orientations showed sensitivity to the film texture with a shear yield strength nearly three times that of single-crystal copper. Shear specimens were fabricated with Cu film–Si substrate interface near the middle of the shear region and compressed to fracture. The shear response showed a mixed behavior of the stiff Si substrate and softer nanocrystalline film and failed in a brittle manner, indicating a response unique to the interface.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W.: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475487 (1994).CrossRefGoogle Scholar
Poole, W.J., Ashby, M.F., and Fleck, N.A.: Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34, 559564 (1996).CrossRefGoogle Scholar
Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411425 (1998).CrossRefGoogle Scholar
Gao, H., Huang, Y., Nix, W.D., and Hutchinson, J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 12391263 (1999).CrossRefGoogle Scholar
Huang, Y., Xue, Z., Gao, H., Nix, W.D., and Xia, Z.C.: A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J. Mater. Res. 15, 17861796 (2000).CrossRefGoogle Scholar
Durst, K., Backes, B., Franke, O., and Goken, M.: Indentation size effect in metallic materials: Modelling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 25472555 (2006).CrossRefGoogle Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986989 (2004).CrossRefGoogle ScholarPubMed
Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 18211830 (2005).CrossRefGoogle Scholar
Kiener, D., Motz, C., Schöberl, T., Jenko, M., and Dehm, G.: Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8, 11191125 (2006).CrossRefGoogle Scholar
Kiener, D., Motz, C., and Dehm, G.: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505, 7987 (2009).CrossRefGoogle Scholar
Kim, J.Y. and Greer, J.: Size-dependent mechanical properties of molybdenum nanopillars. Appl. Phys. Lett. 93, 101916 (2008).CrossRefGoogle Scholar
Frick, C.P., Clark, B.G., Orso, S., Schneider, A.S., and Arzt, E.: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319329 (2008).CrossRefGoogle Scholar
Kim, J.Y., Jang, D., and Greer, J.R.: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 23552363 (2010).CrossRefGoogle Scholar
Jennings, A.T., Burek, M.J., and Greer, J.: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).CrossRefGoogle ScholarPubMed
Soler, R., Wheeler, J.M., Chang, H.J., Segurado, J., Michler, J., Llorca, J., and Molina-Aldareguia, J.M.: Understanding size effects on the strength of single crystals through high-temperature micropillar compression. Acta Mater. 81, 5057 (2014).CrossRefGoogle Scholar
Wu, B., Heidelberg, A., and Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525529 (2005).CrossRefGoogle ScholarPubMed
Budiman, A.S., Han, S.M., Greer, J.R., Tamura, N., Patel, J.R., and Nix, W.D.: A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mater. 56, 602608 (2008).CrossRefGoogle Scholar
Walter, M. and Kraft, O.: A new method to measure torsion moments on small-scaled specimens. Rev. Sci. Instrum. 82, 035109 (2011).CrossRefGoogle ScholarPubMed
Liu, D.B., He, Y.M., Dunstan, J.D., Zhang, B., Gan, Z.P., Hu, P., and Ding, H.M.: Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. Int. J. Plast. 41, 30 (2013).CrossRefGoogle Scholar
Dai, Y.J., Huan, Y., Gao, M., Dong, J., Liu, W., Pan, M.X., Wang, W.H., and Bi, Z.L.: Development of a high-resolution micro-torsion tester for measuring the shear modulus of metallic glass fibers. Meas. Sci. Technol. 26, 025902 (2015).CrossRefGoogle Scholar
Heyer, J.K., Brinckmann, S., Pfetzing-Micklich, J., and Eggeler, G.: Microshear deformation of gold single crystals. Acta Mater. 62, 225 (2014).CrossRefGoogle Scholar
Wierczorek, N., Laplanche, G., Heyer, J-K., Parsa, A.B., Pfetzing-Micklich, J., and Eggeler, G.: Assessment of strain hardening in copper single crystals using in situ SEM microshear experiments. Acta Mater. 113, 320 (2016).CrossRefGoogle Scholar
Steinmann, P.A., Tardy, Y., and Hintermann, H.E.: Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load. Thin Solid Films 154, 333349 (1987).CrossRefGoogle Scholar
Larsson, M., Olsson, M., Hedenqvist, P., and Hogmark, S.: Mechanisms of coating failure as demonstrated by scratch and indentation testing of TiN coated HSS. Surf. Eng. 16, 436444 (2000).CrossRefGoogle Scholar
Beak, B.D., Harris, A.J., and Liskiewicz, T.W.: Review of recent progress in nanoscratch testing. Tribol.-Mater., Surf. Interfaces 7, 8796 (2013).CrossRefGoogle Scholar
Maio, D.D. and Roberts, S.G.: Measuring fracture toughness of coatings using FIB-machined microbeams. J. Mater. Res. 20, 299302 (2005).CrossRefGoogle Scholar
Matoy, K., Detzel, T., Muller, M., Motz, C., and Dehm, G.: Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surf. Coat. Technol. 204, 878881 (2009).CrossRefGoogle Scholar
Schaufler, J., Schmid, C., Durst, K., and Goken, M.: Determination of the interfacial strength and fracture toughness of a-C:H coatings by in situ microcantilever bending. Thin Solid Films 522, 480484 (2012).CrossRefGoogle Scholar
Chen, K., Mu, Y., and Meng, W.J.: A new experimental approach for evaluating the mechanical integrity of interfaces between hard coatings and substrates. MRS Commun. 4, 1923 (2014).CrossRefGoogle Scholar
Mu, Y., Zhang, X., Hutchinson, J.W., and Meng, W.J.: Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol. J. Mater. Res. 32, 14211431 (2017).CrossRefGoogle Scholar
Wu, K., Zhang, J.Y., Liu, G., Zhang, P., Cheng, P.M., Li, J., Zhang, G.J., and Sun, J.: Buckling behaviors and adhesion energy of nanostructured Cu/X (X = Nb, Zr) multilayer films on a compliant substrate. Acta Mater. 61, 78897903 (2013).CrossRefGoogle Scholar
Radchenko, I., Anwarali, H.P., Tippabhotla, S.K., and Budiman, A.S.: Effects of interface shear strength during failure of semicoherent metal/metal nanolaminates: An example of accumulative rollbonded Cu/Nb. Acta Mater. 156, 125135 (2018).CrossRefGoogle Scholar
Mayer, C., Li, N., Mara, N., and Chawla, N.: Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM). Mater. Sci. Eng., A 621, 229 (2015).CrossRefGoogle Scholar
Gray, G.T., Vecchio, K.S., and Livescu, V.: Compact forced simple-shear sample for studying shear localization in materials. Acta Mater. 103, 12 (2016).CrossRefGoogle Scholar
Peirs, J., Verleysen, U.P., Degrieck, J., and Coghe, F.: The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti–6Al–4V. Int. J. Impact Eng. 37, 703 (2010).CrossRefGoogle Scholar
Mayr, C., Eggeler, G., Webster, G.A., and Peter, G.: Double shear creep testing of superalloy single crystals at temperatures above 1000 °C. Mater. Sci. Eng., A 199, 121 (1995).CrossRefGoogle Scholar
Livingston, J.D.: Density and distribution of dislocations in deformed copper crystals. Acta Metall. 10, 229239 (1962).CrossRefGoogle Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
Tang, F. and Schoenung, J.M.: Strain softening in nanocrystalline or ultrafine-grained metals: A mechanistic explanation. Mater. Sci. Eng., A 493, 101 (2008).CrossRefGoogle Scholar
You, Z., Li, X., Gui, L., Lu, Q., Zhu, T., Gao, H., and Lu, L.: Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 61, 217 (2013).CrossRefGoogle Scholar
Anderoglu, O., Misra, A., Wang, J., Hoagland, R.G., Hirth, J.P., and Zhang, X.: Plastic flow stability of nanotwinned Cu foils. Int. J. Plast. 26, 875 (2010).CrossRefGoogle Scholar
Wang, J., Li, N., Anderoglu, O., Zhang, X., Misra, A., Huang, J.Y., and Hirth, J.P.: Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58, 2262 (2010).CrossRefGoogle Scholar
Li, N., Wang, J., Huang, J.Y., Misra, A., and Zhang, X.: Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu. Scr. Mater. 64, 149 (2011).CrossRefGoogle Scholar
Li, N., Wang, J., Zhang, X., and Misra, A.: In situ TEM study of dislocation-twin boundaries interaction in nanotwinned Cu films. JOM 63, 62 (2011).Google Scholar
Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893979 (2008).CrossRefGoogle Scholar
Segal, V.M.: Materials processing by simple shear. Mater. Sci. Eng., A 197, 157164 (1995).CrossRefGoogle Scholar
Segal, V.M.: Severe plastic deformation: Simple shear versus pure shear. Mater. Sci. Eng., A 338, 331344 (2002).CrossRefGoogle Scholar
Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881981 (2006).CrossRefGoogle Scholar
Derby, B.: The dependence of grain size on stress during dynamic recrystallization. Acta Metall. Mater. 39, 955962 (1991).CrossRefGoogle Scholar
Bagherpour, E., Qods, F., Ebrahimi, R., and Miyamoto, H.: Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): Role of shear reversal. Mater. Sci. Eng., A 666, 324338 (2016).CrossRefGoogle Scholar