Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T23:29:22.376Z Has data issue: false hasContentIssue false

Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications

Published online by Cambridge University Press:  18 June 2018

Dieter Schreurs*
Affiliation:
Institute for Materials Research, Hasselt University, Diepenbeek 3590, Belgium; and IMEC vzw – Division IMOMEC, Diepenbeek 3590, Belgium
Steven Nagels
Affiliation:
Institute for Materials Research, Hasselt University, Diepenbeek 3590, Belgium; and IMEC vzw – Division IMOMEC, Diepenbeek 3590, Belgium
Ilaria Cardinaletti
Affiliation:
Institute for Materials Research, Hasselt University, Diepenbeek 3590, Belgium; and IMEC vzw – Division IMOMEC, Diepenbeek 3590, Belgium
Tim Vangerven
Affiliation:
Institute for Materials Research, Hasselt University, Diepenbeek 3590, Belgium; and IMEC vzw – Division IMOMEC, Diepenbeek 3590, Belgium
Rob Cornelissen
Affiliation:
X-LAB, Hasselt University, Diepenbeek 3590, Belgium
Jelle Vodnik
Affiliation:
X-LAB, Hasselt University, Diepenbeek 3590, Belgium
Jaroslav Hruby
Affiliation:
Institute for Materials Research, Hasselt University, Diepenbeek 3590, Belgium; and IMEC vzw – Division IMOMEC, Diepenbeek 3590, Belgium
Wim Deferme
Affiliation:
Institute for Materials Research, Hasselt University, Diepenbeek 3590, Belgium; and IMEC vzw – Division IMOMEC, Diepenbeek 3590, Belgium
Jean V. Manca
Affiliation:
X-LAB, Hasselt University, Diepenbeek 3590, Belgium
*
a)Address all correspondence to this author. e-mail: dieter.schreurs@uhasselt.be
Get access

Abstract

One of the key aims of the OSCAR project (Optical Sensors based on CARbon-materials)—in the framework of the REXUS/BEXUS program—was to explore the use of organic-based solar cells for (aero)space applications through the in-flight investigation of devices’ performance during a stratospheric balloon flight. Next to the in-flight experiments, complementary lab stability assessment tests were performed. In this contribution, both the in-flight and lab experimental methodology and the corresponding technical aspects will be discussed in detail. Furthermore, attention will be paid to the issues of packaging and radiation. The importance of the OSCAR-balloon experiment is not only that it has demonstrated for the first time the use of organic-based solar cells in (aero)space conditions but also that it can be considered as the pioneering start of specific stability assessment methodologies for organic-based solar cells for (aero)space applications.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

References

REFERENCES

Kaltenbrunner, M., White, M., Glowacki, E., Sekitani, T., Someya, T., Sariciftci, N., and Bauer, S.: Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).Google Scholar
Pirotte, G., Kesters, J., Verstappen, P., Govaerts, S., Manca, J., Lutsen, L., Vanderzande, D., and Maes, W.: Continuous flow polymer synthesis toward reproducible large-scale production for efficient bulk heterojunction organic solar cells. ChemSusChem 8, 32283233 (2015).CrossRefGoogle ScholarPubMed
Verstappen, P., Kesters, J., Vanormelingen, W., Heintges, G., Drijkoningen, J., Vangerven, T., Marin, L., Koudjina, S., Champagne, B., Manca, J., Lutsen, L., Vanderzande, D., and Maes, W.: Fluorination as an effective tool to increase the open-circuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-b′]dithiophene-alt-quinoxaline) copolymers. J. Mater. Chem. A 3, 29602970 (2015).CrossRefGoogle Scholar
Widmer, J., Tietze, M., Leo, K., and Riede, M.: Open-circuit voltage and effective gap of organic solar cells. Adv. Funct. Mater. 23, 58145821 (2013).CrossRefGoogle Scholar
Moench, T., Friederich, P., Holzmueller, F., Rutkowski, B., Benduhn, J., Strunk, T., Koerner, C., Vandewal, K., Czyrska-Filemonowicz, A., Wenzel, W., and Leo, K.: Influence of meso and nanoscale structure on the properties of highly efficient small molecule solar cells. Adv. Energy Mater. 6, 1501280 (2016).Google Scholar
Cardinaletti, I., Vangerven, T., Nagels, S., Cornelissen, R., Schreurs, D., Hruby, J., Vodnik, J., Devisscher, D., Kesters, J., D’Haen, J., Franquet, A., Spampinato, V., Conard, T., Maes, W., Deferme, W., and Manca, J.: Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 182, 121127 (2018).Google Scholar
Cardinaletti, I.: Nano-morphology and macro-performance of organic and perovskite solar cells: From terrestrial to space applications. Ph.D. thesis, 2017. Available at: https://doclib.uhasselt.be/dspace/handle/1942/25015.Google Scholar
Siegmund, B., Mischok, A., Benduhn, J., Zeikq, O., Ullbrich, S., Nehm, F., Böhm, M., Spoltore, D., Fröb, H., Körner, C., Leo, K., and Vandewal, K.: Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8, 15421 (2017).Google Scholar
Guo, S., Brandt, C., Andreev, T., Metwalli, E., Wang, W., Perlich, J., and Müler-Buschbaum, P.: First step into space: Performance and morphological evolution of P3HT:PCBM bulk heterojunction solar cells under AM0 illumination. ACS Appl. Mater. Interfaces 6, 1790217910 (2014).Google Scholar
Riedel, I., Parisi, J., Dyakonov, V., Lutsen, L., Vanderzande, D., and Hummelen, J.C.: Effect of temperature and illumination on the electrical characteristics of polymer–fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 3843 (2004).Google Scholar
Park, Y., Noh, S., Lee, D., Kim, J.Y., and Lee, C.: Temperature and light intensity dependence of polymer solar cells with MoO3 and PEDOT:PSS as a buffer layer. J. Korean Phys. Soc. 59, 362366 (2011).CrossRefGoogle Scholar
Kumar, A., Rosen, N., Devine, R., and Yang, Y.: Interface design to improve stability of polymer solar cells for potential space applications. Energy Environ. Sci. 4, 49174920 (2011).Google Scholar
Kumar, A., Devine, R., Mayberry, C., Lei, B., Li, G., and Yang, Y.: Origin of radiation-induced degradation in polymer solar cells. Adv. Funct. Mater. 20, 27292736 (2010).CrossRefGoogle Scholar
Voevodskii, V. and Molin, Y.N.: On the radiation stability of solid organic compounds. Radiat. Res. 17, 366378 (1962).Google Scholar
Lang, F., Nickel, N., Bundesmann, J., Seidel, S., Denker, A., Albrecht, S., Brus, V., Rappich, J., Rech, B., Landi, G., and Neitzert, H.: Radiation hardness and self-healing of perovskite solar cells. Adv. Mater. 28, 87268731 (2016).Google Scholar
Reese, M., Gevorgyan, S., Jørgensen, M., Bundgaard, E., Kurtz, S., Ginley, D., Olson, D., Lloyd, M., Morvillo, P., Katz, E., Elschner, A., Haillant, O., Currier, T., Shrotriya, V., Hermenau, M., Riede, M., Kirov, K., Trimmel, G., Rath, T., Inganäs, O., Zhang, F., Andersson, M., Tvingstedt, K., Lira-Cantu, M., Laird, D., McGuiness, C., Gowrisanker, S., Pannone, M., Xiao, M., Hauch, J., Steim, R., DeLongchamp, D., Rösch, R., Hoppe, H., Espinosa, N., Urbina, A., Yaman-Uzunoglu, G., Bonekamp, J-B., van Breemen, A., Girotto, C., Voroshazi, E., and Krebs, F.: Consensus stability testing protocals for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells 95, 12531267 (2011).CrossRefGoogle Scholar
Bristow, N. and Kettle, J.: Outdoor performance of organic photovoltaics: Diurnal analysis, dependence on temperature, irradiance, and degradation. J. Renewable Sustainable Energy 7, 013111 (2015).Google Scholar
Cardinaletti, I., Kesters, J., Bertho, S., Conings, B., Piersimoni, F., D’Haen, J., Lutsen, L., Nesladek, M., Van Mele, B., Van Assche, G., Vandewal, K., Salleo, A., Vanderzande, D., Maes, W., and Manca, J.: Towards bulk heterojunction polymer solar cells with thermally stable active layer morphology. J. Photonics Energy 4, 040997 (2014).Google Scholar
Bertho, S., Haeldermans, I., Swinnen, A., Moons, W., Martens, T., Lutsen, L., Vanderzande, D., Manca, J., Senes, A., and Bonfiglio, A.: Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 91, 385389 (2007).Google Scholar
Zhang, H., Qiao, X., Shen, Y., and Wang, M.: Effect of temperature on the efficiency of organometallic perovskite solar cells. J. Energy Chem. 24, 729735 (2015).Google Scholar
Supplementary material: File

Schreurs et al. supplementary material

Schreurs et al. supplementary material 1

Download Schreurs et al. supplementary material(File)
File 49.2 KB
Supplementary material: File

Schreurs et al. supplementary material

Schreurs et al. supplementary material 2

Download Schreurs et al. supplementary material(File)
File 4.2 MB
Supplementary material: Image

Schreurs et al. supplementary material

Schreurs et al. supplementary material 3

Download Schreurs et al. supplementary material(Image)
Image 11.7 MB
Supplementary material: File

Schreurs et al. supplementary material

Schreurs et al. supplementary material 4

Download Schreurs et al. supplementary material(File)
File 7.5 MB