Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:48:13.607Z Has data issue: false hasContentIssue false

Metallization strategies for In2O3-based amorphous oxide semiconductor materials

Published online by Cambridge University Press:  03 July 2012

Sunghwan Lee
Affiliation:
School of Engineering, Brown University, Providence, Rhode Island 02912
Keunhan Park
Affiliation:
Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881
David C. Paine*
Affiliation:
School of Engineering, Brown University, Providence, Rhode Island 02912
*
a)Address all correspondence to this author. e-mail: david_paine@brown.edu
Get access

Abstract

Amorphous oxide semiconductors based on indium oxide [e.g., In–Zn–O (IZO) and In–Ga–Zn–O (IGZO)] are of interest for use in thin-film transistor (TFT) applications. We report that the stability of amorphous In–Zn–O (a-IZO) used in TFT applications depends, in part, on the metallization materials used to form the source and drain contacts. A thermodynamics-based approach to the selection of IZO metallization materials is presented along with a study of the microstructural stability of a-IZO metallized with Mo and Ti. In situ transmission electron microscopy (TEM), x-ray diffraction, and atomic force microscopy studies are presented that show that the crystallization temperature of a-IZO metallized with Ti is sharply reduced (to 200 °C), while a-IZO metallized with Mo remains amorphous. The effects of the unstable Ti/IZO interface are shown to include: vacancy injection, enhanced amorphous-to-crystal transformation kinetics, interfacial oxide formation, and the lateral growth on adjacent IZO of rutile TiO2 needles.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yaglioglu, B., Yeom, H.Y., and Paine, D.C.: Crystallization of amorphous In2O3-10 wt % ZnO thin films annealed in air. Appl. Phys. Lett. 86, 261908 (2005).CrossRefGoogle Scholar
2.Hosono, H.: Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 352, 851 (2006).CrossRefGoogle Scholar
3.Chong, E., Jo, K.C., and Lee, S.Y.: High stability of amorphous hafnium-indium-zinc-oxide thin film transistor. Appl. Phys. Lett. 96, 152102 (2010).CrossRefGoogle Scholar
4.Chong, E., Kim, S.H., and Lee, S.Y.: Role of silicon in silicon-indium-zinc-oxide thin-film transistor. Appl. Phys. Lett. 97, 252112 (2010).CrossRefGoogle Scholar
5.Yaglioglu, B., Yeom, H.Y., Beresford, R., and Paine, D.C.: High-mobility amorphous In2O3-10 wt% ZnO thin film transistors. Appl. Phys. Lett. 89, 062103 (2006).CrossRefGoogle Scholar
6.Lee, S., Park, H., and Paine, D.C.: The effect of metallization contact resistance on the measurement of the field effect mobility of long-channel unannealed amorphous In–Zn–O thin film transistors. Thin Solid Films 520, 3769 (2012).CrossRefGoogle Scholar
7.Nasrullah, J., Tyler, G.L., and Nishi, Y.: An atomic force microscope study of surface roughness of thin silicon films deposited on SiO2. IEEE Trans. Nanotechnol. 4, 303 (2005).CrossRefGoogle Scholar
8.Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).CrossRefGoogle ScholarPubMed
9.Leenheer, A.J., Perkins, J.D., van Hest, M., Berry, J.J., O’Hayre, R.P., and Ginley, D.S.: General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films. Phys. Rev. B 77, 115215 (2008).CrossRefGoogle Scholar
10.Lee, S., Park, H., and Paine, D.C.: A study of the specific contact resistance and channel resistivity of amorphous IZO thin film transistors with IZO source-drain metallization. J. Appl. Phys. 109, 063702 (2011).CrossRefGoogle Scholar
11.Lewis, B.G. and Paine, D.C.: Applications and processing of transparent conducting oxides. MRS Bull. 25, 22 (2000).CrossRefGoogle Scholar
12.Paine, D.C., Whitson, T., Janiac, D., Beresford, R., Yang, C.O., and Lewis, B.: A study of low temperature crystallization of amorphous thin film indium-tin-oxide. J. Appl. Phys. 85, 8445 (1999).CrossRefGoogle Scholar
13.Jung, Y.S., Seo, H.Y., Lee, D.W., and Jeon, D.Y.: Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film. Thin Solid Films 445, 63 (2003).CrossRefGoogle Scholar
14.Yaglioglu, B., Huang, Y.J., Yeom, H.Y., and Paine, D.C.: A study of amorphous and crystalline phases in In2O3-10 wt.% ZnO thin films deposited by DC magnetron sputtering. Thin Solid Films 496, 89 (2006).CrossRefGoogle Scholar
15.Moriga, T., Edwards, D.D., Mason, T.O., Palmer, G.B., Poeppelmeier, K.R., Schindler, J.L., Kannewurf, C.R., and Nakabayashi, I.: Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system. J. Am. Ceram. Soc. 81, 1310 (1998).CrossRefGoogle Scholar
16.Nomura, K., Kamiya, T., Ohta, H., Hirano, M., and Hosono, H.: Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O-2 annealing. Appl. Phys. Lett. 93, 192107 (2008).CrossRefGoogle Scholar
17.Lee, S., Bierig, B., and Paine, D.C.: Amorphous structure and electrical performance of low-temperature annealed amorphous indium zinc oxide transparent thin film transistors. Thin Solid Films 520, 3764 (2012).CrossRefGoogle Scholar
18.Shimura, Y., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., and Hosono, H.: Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes. Thin Solid Films 516, 5899 (2008).CrossRefGoogle Scholar
19.Barquinha, P., Goncalves, G., Pereira, L., Martins, R., and Fortunato, E.: Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs. Thin Solid Films 515, 8450 (2007).CrossRefGoogle Scholar
20.Park, J-S., Jeong, J.K., Mo, Y-G., Kim, H.D., and Kim, C-J.: Control of threshold voltage in ZnO-based oxide thin film transistors. Appl. Phys. Lett. 93, 033513 (2008).CrossRefGoogle Scholar
21.Jamshidi-Roudbari, A., Khan, S.A., and Hatalis, M.K.: Integrated full-bit shift register by low-temperature amorphous indium gallium zinc oxide thin-film transistors. Electrochem. Solid-State Lett. 14, J19 (2011).CrossRefGoogle Scholar
22.Na, J.H., Kitamura, M., and Arakawa, Y.: High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes. Appl. Phys. Lett. 93, 063501 (2008).CrossRefGoogle Scholar
23.Park, J-S., Jeong, J.K., Mo, Y-G., Kim, H.D., and Kim, S-I.: Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl. Phys. Lett. 90, 262106 (2007).CrossRefGoogle Scholar
24.Kim, W.S., Moon, Y.K., Kim, K.T., Lee, J.H., Ahn, B.D., and Park, J.W.: An investigation of contact resistance between metal electrodes and amorphous gallium-indium-zinc oxide (a-GIZO) thin-film transistors. Thin Solid Films 518, 6357 (2010).CrossRefGoogle Scholar
25.Sato, A., Abe, K., Hayashi, R., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., and Hosono, H.: Amorphous In-Ga-Zn-O coplanar homojunction thin-film transistor. Appl. Phys. Lett. 94, 133502 (2009).CrossRefGoogle Scholar
26.Lim, W.T., Norton, D.P., Jang, J.H., Craciun, V., Pearton, S.J., and Ren, F.: Carrier concentration dependence of Ti/Au specific contact resistance on n-type amorphous indium zinc oxide thin films. Appl. Phys. Lett. 92, 122102 (2008).CrossRefGoogle Scholar
27.Lee, S. and Paine, D.C.: On the effect of Ti on the stability of amorphous indium zinc oxide used in thin film transistor applications. Appl. Phys. Lett. 98, 262108 (2011).CrossRefGoogle Scholar
28.Lide, D.R.: Standard thermodynamic properties of chemical substances, in CRC Handbook of Chemistry and Physics (CRC Press, 80th edition, New York, NY, 1999).Google Scholar
29.Beyers, R.: Thermodynamic considerations in refractory metal-silicon-oxygen systems. J. Appl. Phys. 56, 147 (1984).CrossRefGoogle Scholar
30.Riviere, J.C.: In Solid State Surface Science, Green, M., ed. (Marcel Dekker, Vol. 1, New York, 1969) p. 179.Google Scholar
31.Hölzl, J. and Schulte, F.K.: Solid Surface Physics, in Springer Tracts of Modern Physics, Höhler, G., ed. (Springer, Vol. 85, Berlin, Germany, 1979).Google Scholar