Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:36:22.091Z Has data issue: false hasContentIssue false

Metallization of glass/ceramic from solutions of organometallic compounds by laser induced pyrolysis

Published online by Cambridge University Press:  31 January 2011

A.M. Dhote
Affiliation:
Centre for Advanced Studies in Materials Science and Solid State Physics, Department of Physics, University of Poona, Pune 411 007, India
S.C. Patil
Affiliation:
Centre for Advanced Studies in Materials Science and Solid State Physics, Department of Physics, University of Poona, Pune 411 007, India
S.M. Kanetkar
Affiliation:
Centre for Advanced Studies in Materials Science and Solid State Physics, Department of Physics, University of Poona, Pune 411 007, India
S.A. Gangal
Affiliation:
Department of Electronics Science, University of Poona, Pune 411 007, India
S.B. Ogale
Affiliation:
Centre for Advanced Studies in Materials Science and Solid State Physics, Department of Physics, University of Poona, Pune 411 007, India
Get access

Abstract

Direct writing of iron lines on glass and Al2O3 has been achieved by CW CO2 laser-driven pyrolytic dissociation of volatile iron pentacarbonyl liquid. Since a very high organometallic molecular density is realized in the solution, use of a liquid precursor has enabled deposition of micron-thick iron films at the writing speeds of 10–400 mm s−1, which are significantly higher as compared to those achievable by the conventional CVD method. The iron stripes deposited on the glass substrate at the laser power density of 5.3 kW cm−2 and the writing speed of 100 mm s−1 are found to have a resistivity of about 580 μohm-cm. These stripes have been found to have an integral bond with the substrate due to the interface reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ehrlich, D. J. and Osgood, R. M., Chem. Phys. Lett. 79, 381 (1981).Google Scholar
2.Ehrlich, D. J., Osgood, R. M., and Deutsch, T. F., J. Electrochem. Soc. 18, 2039 (1981).CrossRefGoogle Scholar
3.Ehrlich, D. J., Osgood, R. M., and Deutsch, T. F., Appl. Phys. Lett. 38, 946 (1981).CrossRefGoogle Scholar
4.Ibbs, K. G., Quantum Electronics and Electro-Optics, edited by Knight, P. L. (Wiley, London, 1983), p. 103.Google Scholar
5.Allen, S. D., J. Appl. Phys. 52, 6501 (1981).CrossRefGoogle Scholar
6.Allen, S. D. and Tringubo, A. B., J. Appl. Phys. 54, 1641 (1983).Google Scholar
7.Love, P. J., Loda, R. T., Rosenberg, R. A., Green, A. K., and Rehn, Victor, in “Laser Assisted Deposition, Etching and Doping,” SPIE Proc. 459 (SPIE, 1984), p. 25.Google Scholar
8.Herman, I. P., Laser Processing and Diagnostics (Bauerle, D.) 39, 396 (1984).CrossRefGoogle Scholar
9.Tison, J. K. and Cohen, M. G., Solid State Technol. 30, 113 (1987).Google Scholar
10.Black, J. G., Doran, S. P., Rothschild, M., and Ehrlich, D. J., Appl. Phys. Lett. 50, 1016 (1987).Google Scholar
11.Yokoyama, H., Kishida, S., and Washio, K., Appl. Phys. Lett. 44, 755 (1984).CrossRefGoogle Scholar
12.Lee, H. W. and Allen, S. D., Appl. Phys. Lett. 58, 19 (1991).Google Scholar
13.Nanai, L. and Hevesi, I., Appl. Phys. Lett. 54, 8 (1989).Google Scholar
14.Montgomery, R. K. and Mantei, T. D., Appl. Phys. Lett. 48, 493 (1986).Google Scholar
15.Gupta, A. and Jagannathan, R., Appl. Phys. Lett. 51, 2254 (1987).CrossRefGoogle Scholar
16.Gerassimov, R. K., Metev, S. M., Savtchenko, S. K., Kotov, G. A., and Veiko, V. P., Appl. Phys. B 28, 266 (1982).Google Scholar
17.Gross, M. E., Fisanick, G. J., Gallagher, P. K., Schnoes, K. J., and Fennell, M. D., Appl. Phys. Lett. 47, 923 (1985).CrossRefGoogle Scholar
18.Gross, M. E., Appelbaum, A., and Gallagher, P. K., Appl. Phys. Lett. 61, 1628 (1987).Google Scholar
19.Mackenzie, K. J. D. and Brown, I. W. M., J. Mater. Sci. Lett. 3, 159 (1984).CrossRefGoogle Scholar