Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T23:53:27.158Z Has data issue: false hasContentIssue false

Melting process of nanometer-sized In particles embedded in an Al matrix synthesized by ball milling

Published online by Cambridge University Press:  31 January 2011

H. W. Sheng
Affiliation:
State Key Laboratory for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
J. Xu
Affiliation:
State Key Laboratory for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
L. G. Yu
Affiliation:
State Key Laboratory for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
X. K. Sun
Affiliation:
State Key Laboratory for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
Z. Q. Hu
Affiliation:
State Key Laboratory for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
K. Lu
Affiliation:
State Key Laboratory for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
Get access

Abstract

Dispersions of nanometer-sized In particles embedded in an Al matrix (10 wt. % In) have been synthesized by ball milling of a mixture of Al and In powders. The as-milled product was characterized by using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDX), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HREM), respectively. It was found that In and Al are pure components immiscible with each other, with nanometer-sized In particles dispersively embedded in the Al matrix. The melting behavior of In particles was investigated by means of differential scanning calorimeter (DSC). The calorimetric measurements indicate that both the melting point and the melting enthalpy of the In nanoparticles decrease with increasing milling time, or refinement of the In particles. Compared to its bulk melting temperature, a melting point depression of 13.4 K was observed when the mean grain size of In is 15 nm, and the melting point depression of In nanoparticles is proportional to the reciprocal of the mean grain size. The melting enthalpy depression was interpreted according to the two-state concept for the nanoparticles. Melting of the interface was deduced to be an exothermal process due to its large excess energy/volume.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Buffat, Ph. and Borel, J-P., Phys. Rev. A 13, 2287 (1976) and references therein.CrossRefGoogle Scholar
2.Boyer, L. L., Phase Trans. 5, 1 (1985) and references therein.CrossRefGoogle Scholar
3.Allen, G. L., Bayles, R.A., Gile, W.W., and Jesser, W.A., Thin Solid Films 144, 297 (1986).CrossRefGoogle Scholar
4.Däges, J., Gleiter, H., and Perepezko, J. H., Phys. Lett. 119, 79 (1986).CrossRefGoogle Scholar
5.Rossouw, C. J. and Donnelly, S.F., Phys. Rev. Lett. 55, 2960 (1985).CrossRefGoogle Scholar
6.Sasaki, K. and Saka, H., Philos. Mag. A 63, 1207 (1991).CrossRefGoogle Scholar
7.Saka, H., Nishikawa, Y., and Imura, T., Philos. Mag. A 57, 895 (1988).CrossRefGoogle Scholar
8.Zhang, D. L. and Cantor, B., Acat Metall. Mater. 39, 1595 (1991).CrossRefGoogle Scholar
9.Gra°bæk, L., Bohr, J., Johnson, E., Johansen, A., Sarholt-Kristensen, L., and Anderson, H.H., Phys. Rev. Lett. 64, 934 (1990).CrossRefGoogle Scholar
10.Lindemann, F. A., Z. Phys. 11, 609 (1910).Google Scholar
11.Born, M., J. Chem. Phys. 7, 591 (1939).CrossRefGoogle Scholar
12.Couchman, P. R. and Jesser, W.A., Philos. Mag. 35, 787 (1977).CrossRefGoogle Scholar
13.Cahn, R. W., Nature 323, 668 (1986).CrossRefGoogle Scholar
14.Fecht, H. J., Nature 356, 133 (1992).CrossRefGoogle Scholar
15.Shi, F. G., J. Mater. Res. 9, 1307 (1994).CrossRefGoogle Scholar
16.Allen, G. L., Gile, W.W., and Jesser, W.A., Acta Metall. 28, 1695 (1980).CrossRefGoogle Scholar
17.Ohashi, T., Kuroda, K., and Saka, H., Philos. Mag. B 65, 1041 (1992).CrossRefGoogle Scholar
18.Metois, J. J. and Heyraud, J. C., Surf. Sci. 128, 334 (1989).Google Scholar
19.Spiller, G. D. T., Philos. Mag. A 46, 535 (1982).CrossRefGoogle Scholar
20.Unruh, K. M., Sheehan, J.F., Huber, T. E., and Huber, C. A., Nanostr. Mater. 3, 425 (1993).CrossRefGoogle Scholar
21.Unruh, K. M., Huber, T. E., and Huber, C. A., Phys. Rev. B 48, 9021 (1993).CrossRefGoogle Scholar
22.Jang, J. S. C. and Koch, C. C., J. Mater. Res. 5, 325 (1990).CrossRefGoogle Scholar
23.Koch, C. C., Jang, J.S.C., and Gross, S. S., J. Mater. Res. 4, 557 (1989).CrossRefGoogle Scholar
24.Turnbull, D., Jang, J.S. C., and Koch, C. C., J. Mater. Res. 5, 1731 (1990).CrossRefGoogle Scholar
25.Unruh, K. M. and Sheehan, J. F., Nanophase Materials (Kluwer Acad. Pub., Dordrecht, The Netherlands, 1994), pp. 341547.CrossRefGoogle Scholar
26.Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, 1974).Google Scholar
27.Sheng, H. W., Xu, J., Sun, X. K., Lu, K., and Hu, Z. Q., Nanostr. Mater. 5, 517 (1995).Google Scholar
28.Sheng, H. W., Ren, G., Peng, L. M., Hu, Z.Q., and Lu, K., unpublished research.Google Scholar
29.Massalski, T. B., 1986, Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986).Google Scholar
30.Eckert, J., Holzer, J. C., Ahn, C. C., Fu, Z., and Johnson, W. L., Nanostr. Mater. 2, 407 (1993).CrossRefGoogle Scholar
31.Bahk, S. and Ashby, M. F., Scripta Metall. 9, 129 (1975).CrossRefGoogle Scholar
32.Uenishi, K., Kawaguchi, H., and Kobayashi, K. F., J. Mater. Sci. 29, 4860 (1994).CrossRefGoogle Scholar
33.Camel, D., Eusathopoulos, L. N., and Desré, P., Acta Metall. 28, 239 (1980).CrossRefGoogle Scholar
34.Lück, R. and Lu, K., J. Mater. Sci. Technol. 11, 157 (1995).Google Scholar
35.Boolchand, P. and Koch, C. C., J. Mater. Res. 7, 2876 (1992).CrossRefGoogle Scholar
36.Jayanetti, J. K. D. S., Heald, S. M., and Tan, Z., Phys. Rev. B 47, 2465 (1993).CrossRefGoogle Scholar
37.Gleiter, H., Prog. Mater. Sci. 33, 223 (1984).CrossRefGoogle Scholar
38.Birringer, R., Herr, U., and Gleiter, H., Trans. Jpn. Inst. Met. Suppl. 27, 43 (1986).Google Scholar
39.Eastman, J. A. and Fitzsimmons, M. R., J. Appl. Phys. 77, 522 (1995).CrossRefGoogle Scholar
40.Lu, K., Lück, R., and Predel, B., Acta Metall. Mater. 7, 2303 (1994).CrossRefGoogle Scholar
41.Lu, K., Phys. Rev. B 51, 18 (1995).CrossRefGoogle Scholar
42.Rose, J. H., Smith, J.R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
43.Fecht, H. J., Acta Metall. Mater. 38, 1927 (1990).CrossRefGoogle Scholar