Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:43:53.819Z Has data issue: false hasContentIssue false

Mechanism of coarsening and deformation behavior of nanoporous Cu with varying relative density

Published online by Cambridge University Press:  27 April 2020

Lijie He
Affiliation:
Materials Science Program, University of Rochester, Rochester, New York 14627, USA
Muhammad Hadi
Affiliation:
Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA
Haomin Liu
Affiliation:
Materials Science Program, University of Rochester, Rochester, New York 14627, USA
Niaz Abdolrahim*
Affiliation:
Materials Science Program, University of Rochester, Rochester, New York 14627, USA Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA Materials Science Program, University of Rochester, Rochester, New York 14627, USA; and Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA
*
a)Address all correspondence to this author. e-mail: niaz@rochester.edu
Get access

Abstract

In this study, uniaxial tensile loading simulations were performed on several single crystalline copper nanoporous (NP) structures with varying relative density (RD) via molecular dynamics simulations. From the results, two distinctive deformation patterns were observed: structures with a low RD went through coarsening, and structures with a high RD did not. During coarsening, dislocations are nucleated because of the high surface stress induced by the thin ligaments. These dislocations drive the merging of ligaments as well as nodes and lead to an increase in the differences between the size of nodes and ligaments. The disproportional nodes and ligaments result in a lowered strength. In addition, larger nodes provide more favorable circumstances for the formation of sessile dislocations, which hinder the movement of other propagating Shockley partials and result in strain hardening. Subsequently, lower RD structures offer anomalously high strain-hardening potential, whereas high RD structures show better strength but poor deformability. These results help us in better understanding the plastic behavior of NP structures as a function of their RD.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, Q., Si, C., Zhang, J., and Zhang, Z.: Sign inversion of surface stress-charge response of bulk nanoporous nickel actuators with different surface states. Phys. Chem. Chem. Phys. 18, 19798 (2016).CrossRefGoogle ScholarPubMed
Hu, K., Lan, D., Li, X., and Zhang, S.: Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA–Au bio bar codes. Anal. Chem. 80, 9124 (2008).CrossRefGoogle ScholarPubMed
Biener, J., Wittstock, A., Zepeda-Ruiz, L.A., Biener, M.M., Zielasek, V., Kramer, D., Viswanath, R.N., Weissmuller, J., Baumer, M., and Hamza, A.V.: Surface-chemistry-driven actuation in nanoporous gold. Nat. Mater. 8, 47 (2009).CrossRefGoogle ScholarPubMed
Biener, M.M., Biener, J., Wichmann, A., Wittstock, A., Baumann, T.F., Bäumer, M., and Hamza, A.V.: ALD functionalized nanoporous gold: Thermal stability, mechanical properties, and catalytic activity. Nano Lett. 11, 3085 (2011).CrossRefGoogle ScholarPubMed
Seker, E., Reed, M.L., and Begley, M.R.: Nanoporous gold: Fabrication, characterization, and applications. Materials 2, 2188 (2009).CrossRefGoogle Scholar
Ngo, B.N.D., Stukowski, A., Mameka, N., Markmann, J., Albe, K., and Weissmuller, J.: Anomalous compliance and early yielding of nanoporous gold. Acta Mater. 93, 144 (2015).CrossRefGoogle Scholar
Fujita, T., Guan, P., McKenna, K., Lang, X., Hirata, A., Zhang, L., Tokunaga, T., Arai, S., Yamamoto, Y., Tanaka, N., Ishikawa, Y., Asao, N., Yamamoto, Y., Erlebacher, J., and Chen, M.: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775 (2012).CrossRefGoogle ScholarPubMed
Badwe, N., Chen, X., and Sieradzki, K.: Mechanical properties of nanoporous gold in tension. Acta Mater. 129, 251 (2017).CrossRefGoogle Scholar
Briot, N.J. and Balk, T.J.: Developing scaling relations for the yield strength of nanoporous gold. Philos. Mag. 95, 2955 (2015).CrossRefGoogle Scholar
Ruestes, C.J., Schwen, D., Millán, E.N., Aparicio, E., and Bringa, E.M.: Mechanical properties of Au foams under nanoindentation. Comput. Mater. Sci. 147, 154 (2018).CrossRefGoogle Scholar
To, A.C., Tao, J., Kirca, M., and Schalk, L.: Ligament and joint sizes govern softening in nanoporous aluminum. Appl. Phys. Lett. 98, 051903 (2011).CrossRefGoogle Scholar
He, L. and Abdolrahim, N.: Deformation mechanisms and ductility enhancement in core–shell Cu@Ni nanoporous metals. Comput. Mater. Sci. 150, 397 (2018).CrossRefGoogle Scholar
Abdolrahim, N., Bahr, D.F., Revard, B., Reilly, C., Ye, J., Balk, T.J., and Zbib, H.M.: The mechanical response of core–shell structures for nanoporous metallic materials. Philos. Mag. 93, 736 (2013).CrossRefGoogle Scholar
Neogi, A., He, L., and Abdolrahim, N.: Atomistic simulations of shock compression of single crystal and core–shell Cu@Ni nanoporous metals. J. Appl. Phys. 126, 015901 (2019).CrossRefGoogle Scholar
Abdolrahim, N., Mastorakos, I.N., Shao, S., Bahr, D.F., and Zbib, H.M.: The effect of interfacial imperfections on plastic deformation in nanoscale metallic multilayer composites. Comput. Mater. Sci. 86, 118 (2014).CrossRefGoogle Scholar
Mathur, A. and Erlebacher, J.: Size dependence of effective Young's modulus of nanoporous gold. Appl. Phys. Lett. 90, 061910 (2007).CrossRefGoogle Scholar
Sun, X.Y., Xu, G.K., Li, X.Y., Feng, X.Q., and Gao, H.J.: Mechanical properties and scaling laws of nanoporous gold. J. Appl. Phys. 113, 023505 (2013).Google Scholar
Liu, H. and Abdolrahim, N.: A modified scaling law for stiffness of nanoporous materials based on gyroid cell model. Int. J. Mech. Sci. 166, 105223 (2019).CrossRefGoogle Scholar
Mangipudi, K.R., Epler, E., and Volkert, C.A.: Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 119, 115 (2016).CrossRefGoogle Scholar
Huber, N., Viswanath, R.N., Mameka, N., Markmann, J., and Weißmüller, J.: Scaling laws of nanoporous metals under uniaxial compression. Acta Mater. 67, 252 (2014).CrossRefGoogle Scholar
Crowson, D.A., Farkas, D., and Corcoran, S.G.: Mechanical stability of nanoporous metals with small ligament sizes. Scr. Mater. 61, 497 (2009).CrossRefGoogle Scholar
Li, Q., Guo, L., Qiu, T., Ye, J., He, L., Li, X., and Tuo, X.: Polyurethane/polyphenylsilsequiloxane nanocomposite: From waterborne dispersions to coating films. Prog. Org. Coat. 122, 19 (2018).Google Scholar
Zhang, W.X. and Wang, T.J.: Effect of surface energy on the yield strength of nanoporous materials. Appl. Phys. Lett. 90, 063104 (2007).CrossRefGoogle Scholar
Beets, N., Farkas, D., and Corcoran, S.: Deformation mechanisms and scaling relations in the mechanical response of nano-porous Au. Acta Mater. 165, 626 (2019).CrossRefGoogle Scholar
Cui, Y., Derby, B., Li, N., Mara, N.A., and Misra, A.: Suppression of shear banding in high-strength Cu/Mo nanocomposites with hierarchical bicontinuous intertwined structures. Mater. Res. Lett. 6, 184 (2018).CrossRefGoogle Scholar
Zhu, T., Li, J., Samanta, A., Kim, H.G., and Suresh, S.: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. 104, 3031 (2007).CrossRefGoogle ScholarPubMed
Beets, N. and Farkas, D.: Mechanical response of Au foams of varying porosity from atomistic simulations. JOM 70, 2185 (2018).CrossRefGoogle Scholar
Chen-Wiegart, Y-c.K., Wang, S., Chu, Y.S., Liu, W., McNulty, I., Voorhees, P.W., and Dunand, D.C.: Structural evolution of nanoporous gold during thermal coarsening. Acta Mater. 60, 4972 (2012).CrossRefGoogle Scholar
Liu, R. and Antoniou, A.: A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater. 61, 2390 (2013).CrossRefGoogle Scholar
Pia, G. and Delogu, F.: Coarsening of nanoporous Au: Relationship between structure and mechanical properties. Acta Mater. 99, 29 (2015).CrossRefGoogle Scholar
Kolluri, K. and Demkowicz, M.J.: Coarsening by network restructuring in model nanoporous gold. Acta Mater. 59, 7645 (2011).CrossRefGoogle Scholar
Jin, H-J., Kurmanaeva, L., Schmauch, J., Rösner, H., Ivanisenko, Y., and Weissmüller, J.: Deforming nanoporous metal: Role of lattice coherency. Acta Mater. 57, 2665 (2009).CrossRefGoogle Scholar
Viswanath, R.N., Chirayath, V.A., Rajaraman, R., Amarendra, G., and Sundar, C.S.: Ligament coarsening in nanoporous gold: Insights from positron annihilation study. Appl. Phys. Lett. 102, 253101 (2013).CrossRefGoogle Scholar
Parida, S., Kramer, D., Volkert, C.A., Rosner, H., Erlebacher, J., and Weissmuller, J.: Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett. 97, 035504 (2006).CrossRefGoogle ScholarPubMed
El-Zoka, A.A., Howe, J.Y., Newman, R.C., and Perovic, D.D.: In situ STEM/SEM study of the coarsening of nanoporous gold. Acta Mater. 162, 67 (2019).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Wilkerson, J.W.: Anomalous size effects in nanoporous materials induced by high surface energies. J. Mater. Res. 34, 2337 (2019).CrossRefGoogle Scholar
Li, Y., Dinh Ngô, B-N., Markmann, J., and Weissmüller, J.: Topology evolution during coarsening of nanoscale metal network structures. Phys. Rev. Mater. 3, 076001 (2019).CrossRefGoogle Scholar
Liu, H., He, L., and Abdolrahim, N.: Molecular dynamics simulation studies on mechanical properties of standalone ligaments and networking nodes, a connection to nanoporous material. Model. Simulat. Mater. Sci. Eng. 26, 075001 (2018).CrossRefGoogle Scholar
He, L. and Abdolrahim, N.: Stress-assisted structural phase transformation enhances ductility in Mo/Cu bicontinuous intertwined composites. ACS Appl. Nano Mater. 2, 1890 (2019).CrossRefGoogle Scholar
Abdolrahim, N., Mastorakos, I.N., and Zbib, H.M.: Deformation mechanisms and pseudoelastic behaviors in trilayer composite metal nanowires. Phys. Rev. B 81, 054117, (2010).CrossRefGoogle Scholar
Voter, A.F. and Chan, S.P.: Accurate Interatomic Potentials for Ni, Al and Ni3Al. MRS Proceedings, Vol. 82, 175, (1986).Google Scholar
Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
Cao, A. and Wei, Y.: Atomistic simulations of the mechanical behavior of fivefold twinned nanowires. Phys. Rev. B 74, 214108 (2006).CrossRefGoogle Scholar
Alexander, S. and Karsten, A.: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simulat. Mater. Sci. Eng. 18, 085001 (2010).Google Scholar
Alexander, S.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simulat. Mater. Sci. Eng. 18, 015012 (2010).Google Scholar
Kimmel, R., Kiryati, N., and Bruckstein, A.M.: Sub-pixel distance maps and weighted distance transforms. J. Math. Imag. Vis. 6, 223 (1996).CrossRefGoogle Scholar
Maurer, C.R., Rensheng, Q., and Raghavan, V.: A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25, 265 (2003).CrossRefGoogle Scholar
Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd ed. (Springer, 2003); pp. 170171.Google Scholar
Supplementary material: File

He et al. Supplementary Materials

He et al. Supplementary Materials

Download He et al. Supplementary Materials(File)
File 1.3 MB