Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T10:46:38.934Z Has data issue: false hasContentIssue false

Mechanical behavior of fine-grained Mg-6.5Li at elevated temperature

Published online by Cambridge University Press:  03 March 2011

Eric M. Taleff
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, California 94305
Oleg D. Sherby
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Get access

Abstract

A Mg-6.5 wt. % Li alloy containing 80% hep alpha phase and 20% bcc beta phase was processed to achieve an average grain size of 5.9 μm. Strain-rate-change tests were performed in the temperature range from 398 K to 573 K. Two types of creep behavior were observed. A stress exponent of five, obtained at low temperatures and high stresses, is attributed to a diffusion-controlled dislocation creep process in the alpha matrix. A stress exponent of three, obtained at high temperatures and low stresses, is attributed to a solute-drag controlled dislocation creep process in the alpha matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Metenier, P., González-Doncel, G., Ruano, O. A., Wolfenstine, I., and Sherby, O. D., Mater. Sci. Eng. A125, 195 (1990).CrossRefGoogle Scholar
2Wolfenstine, J., González-Doncel, G., and Sherby, O. D., in Metal and Ceramic Matrix Composites: Processing, Modeling and Mechanical Behavior, edited by Bhagat, R. B., Clauer, A. H., Kumar, P., and Ritter, A. M. (The Minerals, Metals and Materials Society, Warrendale, PA, 1990), p. 263.Google Scholar
3Taleff, E. M., Ruano, O. A., Wolfenstine, J., and Sherby, O. D., J. Mater. Res. 7, 2131 (1992).CrossRefGoogle Scholar
4ASM Metals Handbook, 8th ed. (1973), Vol. 8, p. 314.Google Scholar
5Ball, A. and Hutchinson, M. M., Met. Sci. J. 3, 1 (1969).CrossRefGoogle Scholar
6Köster, W., Z. Metallkd. 39, 1 (1948).Google Scholar
7Sherby, O. D. and Burke, P. M., Prog. Mater. Sci. 13, 325 (1968).CrossRefGoogle Scholar
8Sherby, O. D. and Weertman, J., Acta Metall. 27, 387 (1979).CrossRefGoogle Scholar
9Lin, J. and Sherby, O. D., Res. Mechanica 2, 251 (1981).Google Scholar
10Cahoon, J. R. and Sherby, O. D., Metall. Trans. A 23A, 2491 (1992).CrossRefGoogle Scholar
11Roberts, C. S., Trans. AIME 197, 1121 (1953–1954).Google Scholar
12Weertman, J., Trans. Metall. Soc. AIME 218, 207 (1960).Google Scholar
13King, H. W., J. Mater. Sci. 1, 79 (1966).CrossRefGoogle Scholar
14Fukuyo, H., Tsai, H. C., Oyama, T., and Sherby, O. D., ISIJ Int. 31, 76 (1991).CrossRefGoogle Scholar
15Oikawa, H., Technol. Rep. Tohoku Univ. 48, 9 (1983).Google Scholar
16Hirano, K. and Hishinuma, A., J. Jpn. Inst. Metall. 32, 516 (1968).CrossRefGoogle Scholar
17Gertsriken, S. D., Dekhtyar, I. Y., Plotnikova, N. P., Slastnikova, L. F., and Yachenko, T. K., Isslcd. Aharpr. Splav. 3, 68 (1958).Google Scholar
18Sherby, O. D. and Wadsworth, J., in Deformation, Processing and Structure, edited by Krauss, G. (ASM, Metals Park, OH, 1984), p. 355.Google Scholar