Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T01:35:37.778Z Has data issue: false hasContentIssue false

Material characterization in support of the development of an anode substrate for solid oxide fuel cells

Published online by Cambridge University Press:  31 January 2011

D. Simwonis
Affiliation:
Department of Chemical Engineering, National Technical University of Athens, Athens GR-15773, Greece
A. Naoumidis
Affiliation:
Institute for Materials in Energy Systems (IWE), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
F. J. Dias
Affiliation:
Institute for Materials in Energy Systems (IWE), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
J. Linke
Affiliation:
Institute for Materials in Energy Systems (IWE), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
A. Moropoulou
Affiliation:
Department of Chemical Engineering, National Technical University of Athens, Athens GR-15773, Greece
Get access

Abstract

A new design for solid oxide fuel cells (SOFC's) was developed aiming at the reduction of the total electrical resistance of the cell. The thickness of the electrolyte was decreased, while the anode took on the role of the substrate. The pore structure with respect to gas permeability of this component has to be optimized for the proper operation of this design. Anode substrates, consisting of a cermet (yttrium-stabilized ZrO2 and metallic Ni) and produced by two different processes, coat mix and tape casting, were characterized with respect to pore structure (shape and mean radius), porosity (total, open and permeable), pore size distribution and air permeability. The following methods were used: (i) optical and electron scanning microscopy in combination with image analysis, (ii) mercury porosity, and (iii) air permeability. Correlations between air permeability and porosity and also the percentage of permeable pores in anodes show the superiority of coat mix samples to tape-cast ones. It has been observed that the coat mix process can produce anode substrates with interconnecting porosity, while tape casting, as used in this study, needs some modifications in order to be appropriate for this purpose.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Divisek, J. and Schwuger, M. J., Brenstoffzellen als Wandler chemischer Energie in Elektrizität (KFA-Bericht, Jülich, Germany, 1990).Google Scholar
2.Sheppard, L. M., dv. Materials & Processes Inc., AMetal Progress 6, 4651 (1987).Google Scholar
3.Luhleigh, H., Dias, F. J., Pflaum, P., and Nickel, H., “Das Coat-Mix-Verfahren,” KFA-Bericht, Jül 1221 (1975).Google Scholar
4.Nickel, H., Dias, F. J., Bach, K., Best, W., and Simonis, “Entwicklung von Heißgasfilter aus SiC auf Basis des Coat-Mix-Verfahrens,” 2. Symp. Materialforschung 1991, Dresden, Germany.Google Scholar
5.Dias, F. J., Kampel, M., Koch, F. J., and Nickel, H., Ceramics in Energy Applications, in Proc. Sec. Inter. Conf., London, April 20–21 1994 (The Institute of Energy, Pergamon, Elsevier Science Ltd., New York), pp. 920.Google Scholar
6.Luhleich, H., Dias, F. J., Pflaum, P., and Hannen, W., “Vacuum Drying process,” Technische Information Nr. KFA-Jülich, April 1979.Google Scholar
7.Nickel, H., Syskakis, E., and Naoumidis, A., “Foliengießen zur Herstellung von Komponenten für die planare Hochtemperatur-Breennstoffzelle,” VDI-Bericht Nr. 1151 (1995).Google Scholar
8.Schwenk, R., Syskakis, E., Kountouros, P., Naoumidis, A., and Telle, R., Rev. Proc. Int. Conf., Sept. 11–14 in Friedrichshafen (1995), pp. 373377.Google Scholar
9.Fitzner, B. and Basten, D., “Gesteinporosität-Klassifizierung, meßtechnische Erfassung und Bewertung ihrer Verwitterungsrelevanz,” Jahresberichte aus dem Forschungsprogramm Steinzerfall-Steinkonservierung, Band 4 (1992).Google Scholar
10.Moropoulou, A., Biscontin, G., Theoulakis, P., Bisbikou, K., Zendri, E., Bakolas, A., and Maravelaki, P., in Conservation of Stone and Other Materials, edited by Thiel, M-J. (UNESCO RILEM Publ. E& Hall, Paris, 1993), p. 402.Google Scholar
11.Moropoulou, A., Bakolas, A., and Bisbikou, K., Thermochim. Acta 2573, 111 (1995).Google Scholar
12.Moropoulou, A., Theoulakis, P., and Bisbikou, K., Revue des archeloges et historien d' art de Louvain 27, 2335 (1994).Google Scholar
13.Exner, H. E. and Hougardy, H. P., Einführung in die Quantitative Gefügeanalyse (Informationsgesellschaft, Verlag, 1986).Google Scholar
14.Lane, A. M., “Interpretation of Mercury Porosimetry Data,” Ph.D., University of Massachusetts (1984), pp. 37.Google Scholar
15.Washburn, E. W., Proc. Natl. Acad. Sci. USA 7, 115 (1921).CrossRefGoogle Scholar
16. Gmelins Handbuch der anorganischen Chemie, 8 Auflage, 34, “Quecksilber” (1960).Google Scholar
17.Carman, P. C., Flow of Gases through Porous Media (Butterworth Scientific Publications, London, 1956).Google Scholar
18. DIN 51058, “Bestimmung der spezifischen Gasdurchlässigkeit feuerfester Steine” (1963), p. 1.Google Scholar