Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T10:08:14.323Z Has data issue: false hasContentIssue false

Low temperature consolidated lead-free ferroelectric niobate ceramics with improved electrical properties

Published online by Cambridge University Press:  31 January 2011

Mirva Eriksson
Affiliation:
Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
Haixue Yan
Affiliation:
School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom; and Nanoforce Technology Ltd., London, E1 4NS, United Kingdom
Mats Nygren
Affiliation:
Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
Mike J. Reece
Affiliation:
School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom; and Nanoforce Technology Ltd., London, E1 4NS, United Kingdom
Zhijian Shen*
Affiliation:
Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
*
a)Address all correspondence to this author. e-mail: shen@inorg.su.se
Get access

Abstract

There is a concerted effort to develop lead-free piezoelectric ceramics. (Na0.5K0.5)NbO3-based ceramics have good electrical properties, and are a potential replacement material for lead zirconate titanate piezoelectric ceramics. In this work a commercial powder based on (Na0.5K0.5)NbO3 with an initial particle size of ∼260 nm was consolidated by spark plasma sintering (SPS). To avoid volatilization, high mechanical pressures were used to minimize the densification temperature. It was found that under a uniaxial pressure of 100 MPa, fully densified compacts can be prepared at 850 °C. Ceramics densified at such a low temperature demonstrate an unusually high remanent polarization (30 μC/cm2) and high d33 (146 pC/N). The improved ferroelectric properties are ascribed to the homogeneous, dense, and submicron grained microstructure achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cross, E.Materials science: Lead-free at last. Nature 432, 24 (2004)CrossRefGoogle ScholarPubMed
2.Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., Nakamura, M.Lead-free piezoceramics. Nature 432, 84 (2004)CrossRefGoogle ScholarPubMed
3.Egerton, L., Dillon, D.M.Piezoelectric and dielectric properties of ceramics in the system of potassium-sodium niobate. J. Am. Ceram. Soc. 42, 438 (1959)CrossRefGoogle Scholar
4.Haertling, G.H.Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329 (1967)CrossRefGoogle Scholar
5.Tennery, V.J., Hang, K.W.Thermal and x-ray diffraction studies of the sodium niobate(V)-potassium niobate(V) system. J. Appl. Phys. 39, (10)4749 (1968)CrossRefGoogle Scholar
6.Zhang, B., Li, J., Wang, K., Zhang, H.Compositional dependence of piezoelectric properties in NaxK1–xNbO3 lead-free ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, (5)1605 (2006)CrossRefGoogle Scholar
7.Jaeger, R.E., Egerton, L.Hot pressing of potassium sodium niobates. J. Am. Ceram. Soc. 45, 209 (1962)CrossRefGoogle Scholar
8.Takao, H., Saito, Y., Aoki, Y., Horibuchi, K.Microstrutural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J. Am. Ceram. Soc. 89, (6)1951 (2006)CrossRefGoogle Scholar
9.Skidmore, T.A., Milne, S.J.Phase development during mixed-oxide processing of a [Na0.5K0.5NbO3]1–x–[LiTaO3]x powder. J. Mater. Res. 22, (8)2265 (2007)CrossRefGoogle Scholar
10.Jenko, D., Benčan, A., Malič, B., Holc, J., Kosec, M.Electron microscopy studies of potassium sodium niobate ceramics. Microsc. Microanal. 11, 572 (2005)CrossRefGoogle ScholarPubMed
11.Zhen, Y., Li, J-F.Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89, (12)3669 (2006)CrossRefGoogle Scholar
12.Jaffe, B., Cook, W.R. Jr., Jaffe, H.Piezoelectric Ceramics (Academic Press, London 1971)185212Google Scholar
13.Li, J., Wang, K., Zhang, B., Zhang, L.Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, (2)706 (2006)CrossRefGoogle Scholar
14.Malic, B., Bernard, J., Holc, J., Jenko, D., Kosec, M.Alkaline-earth doping in (K,Na)NbO3 based piezoceramics. J. Eur. Ceram. Soc. 25, (12)2707 (2005)CrossRefGoogle Scholar
15.Zuo, R., Roedel, J.Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89, (6)2010 (2006)CrossRefGoogle Scholar
16.Park, H-Y., Ahn, C-W., Song, H-C., Lee, J-H., Nahm, S., Uchino, K., Lee, H-G., Lee, H-J.Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 ceramics. Appl. Phys. Lett. 89, 062906 (2006)CrossRefGoogle Scholar
17.Wang, R., Xie, R., Sekiya, T., Shimojo, Y.Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull. 39, 1709 (2004)CrossRefGoogle Scholar
18.Egerton, L., Bieling, C.A.Isostatically hot-pressed sodium-potassium niobate transducer material for ultrasonic devices. Am. Ceram. Soc. Bull. 47, (12)1151 (1968)Google Scholar
19.Dungan, R.H., Golding, R.D.Polarization of NaNbO3–KNbO3 solid solutions. J. Am. Ceram. Soc. 48, (11)601 (1965)CrossRefGoogle Scholar
20.Tokita, M.Innovative sintering process. Spark plasma sintering (SPS). Materials Integration 19, (12)42 (2006)Google Scholar
21.Tokita, M.Present situation and future prospects of spark plasma sintering (SPS) system. Shinsozai 7, (1)19 (1996)Google Scholar
22.Munir, Z.A., Anselmi-Tamburini, U.The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006)CrossRefGoogle Scholar
23.Salamon, D., Shen, Z., Šajgalík, P.Rapid formation of α-sialon during spark plasma sintering: Its origin and implications. J. Eur. Ceram. Soc. 27, (6)2541 (2007)Google Scholar
24.Ahtee, M., Hewat, A.W.Structural phase transitions in sodium-potassium niobate solid solutions by neutron powder diffraction. Acta Crystallogr., Sect. A 34, (2)309 (1978)CrossRefGoogle Scholar
25.Matsubara, M., Yamaguchi, T., Sakamoto, W., Kikuta, K., Yogo, T., Hirano, S.Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. J. Am. Ceram. Soc. 88, (5)1190 (2005)CrossRefGoogle Scholar
26.Buessem, W.R., Cross, L.E., Goswami, A.K.Phenomenological theory of high permittivity in fine-grained barium titanate. J. Am. Ceram. Soc. 49, (1)33 (1966)CrossRefGoogle Scholar
27.Zhang, H., Yan, H., Ning, H., Reece, M.J., Eriksson, M., Shen, Z., Kan, Y., Wang, P.Grain-size effect on the properties of Aurivillius phase Bi3.15Nd0.85Ti3O12 ferroelectric ceramics. Nanotechnology 20, 385708 (2009)CrossRefGoogle ScholarPubMed
28.Sundarakannan, B., Kakimoto, K., Ohsato, H.Frequency- and temperature-dependent dielectric and conductivity behavior of KNbO3 ceramics. J. Appl. Phys. 94, (8)5182 (2003)CrossRefGoogle Scholar
29.Kizaki, Y., Noguchi, Y., Miyayama, M.Defect control for low leakage current in K0.5Na0.5NbO3 single crystals. Appl. Phys. Lett. 89, (14)142910 (2006)CrossRefGoogle Scholar
30.Shirane, G., Newnham, R., Pepinsky, R.Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3. Phys. Rev. 96, 581 (1954)CrossRefGoogle Scholar
31.Shirane, G., Danner, H., Pavlovic, A., Pepinsky, R.Phase transitions in ferroelectric KNbO3. Phys. Rev. 93, 672 (1954)CrossRefGoogle Scholar
32.Zhang, Q.M., Pan, W.Y., Jang, S.J., Cross, L.E.Domain wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics. J. Appl. Phys. 64, (11)6445 (1988)CrossRefGoogle Scholar
33.Zhang, Q.M., Wang, H., Kim, N., Cross, L.E.Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 75, (1)454 (1994)CrossRefGoogle Scholar
34.Nuffer, J., Lupascu, D.C., Rodel, J.Damage evolution in ferroelectric PZT induced by bipolar electric cycling. Acta Mater. 48, (14)3783 (2000)CrossRefGoogle Scholar
35.Guo, Y., Kakimoto, K., Ohsato, H.Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–SrTiO3 ceramics. Solid State Commun. 129, 279 (2004)Google Scholar
36.Chang, Y., Yang, Z., Chao, X., Zhang, R., Li, X.Dielectric and piezoelectric properties of alkaline-earth titanate doped (K0.5Na0.5) NbO3 ceramics. Mater. Lett. 61, 785 (2007)CrossRefGoogle Scholar
37.Ringgaard, E., Wurlitzer, T.Lead-free piezoceramics based on alkali niobates. J. Eur. Ceram. Soc. 25, (12)2701 (2005)CrossRefGoogle Scholar
38.Birol, H., Damjanovic, D., Setter, N.Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 26, (6)861 (2006)CrossRefGoogle Scholar
39.Guo, Y., Kakimoto, K-I., Ohsato, H.Structure and electrical properties of lead-free (Na0.5 K0.5)NbO3–BaTiO3 Ceramics. Jpn. J. Appl. Phys. 43, 6662 (2004)CrossRefGoogle Scholar
40.Guo, Y., Kakimoto, K-I., Ohsato, H.Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121 (2004)CrossRefGoogle Scholar