Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:20:01.991Z Has data issue: false hasContentIssue false

Localized heating and fracture criterion for bulk metallic glasses

Published online by Cambridge University Press:  01 April 2006

B. Yang
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
C.T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
T.G. Nieh*
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
M.L. Morrison
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996
P.K. Liaw
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996
R.A. Buchanan
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996
*
a) Address all correspondence to this author. e-mail: tnieh@utk.edu
Get access

Abstract

In this study, we demonstrated that the failure of bulk metallic glasses (BMGs) results from a sudden temperature rise within a shear band. Using a shear transformation zone model, we successfully calculated the temperature within a shear band and found it consistent with the observation from an in situ infrared thermographic system. The instantaneous temperature within a shear band at fracture agrees remarkably well with the glass transition temperature (Tg providing a new criterion to determine the strength of BMGs from their Tg. This agreement also discloses the fact that catastrophic failure of BMG is caused by the sudden drop in viscosity inside the shear band when the instantaneous temperature within a shear band approaches Tg.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.He, Y., Poon, S.J., Shiflet, G.J.: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).CrossRefGoogle ScholarPubMed
2.Cahn, R.W.: Materials science: Aluminum-based glassy alloys. Nature 341, 183 (1989).Google Scholar
3.Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).CrossRefGoogle ScholarPubMed
4.Liu, C.T., Heatherly, L., Easton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A., Inoue, A.: Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29(7), 1811 (1998).CrossRefGoogle Scholar
5.Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
6.Chen, M.W., Zhang, T., Inoue, A., Sakai, A., Sakurai, T.: Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Appl. Phys. Lett. 75(12), 1697 (1999).CrossRefGoogle Scholar
7.Kim, J.J., Choi, Y., Suresh, S., Argon, A.S.: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002).CrossRefGoogle ScholarPubMed
8.Leamy, H.J., Chen, H.S., Wang, T.T.: Plastic-flow and fracture of metallic glass. Metall. Trans. 3(3), 699 (1972).CrossRefGoogle Scholar
9.Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1976).CrossRefGoogle Scholar
10.Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
11.Pekarskaya, E., Kim, C.P., Johnson, W.L.: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16(9), 2513 (2001).Google Scholar
12.Donovan, P.E., Stobbs, W.M.: The structure of shear bands in metallic glasses. Acta Metall. 29(8), 1419 (1981).CrossRefGoogle Scholar
13.Hufnagel, T.C., Jiao, T., Li, Y., Xing, L.Q., Ramesh, K.T.: Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17(6), 1441 (2002).CrossRefGoogle Scholar
14.Wright, W.J., Schwarz, R.B., Nix, W.D.: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng. A 319–321, 229 (2001).CrossRefGoogle Scholar
15.Lewandowski, J. J., Stelmashenko, N. A., and Greer, A. L.: Experimental observations of shear banding in bulk metallic glasses. The 2005 TMS Annual Meeting, San Francisco, CA, February 13–17, 2005.Google Scholar
16.Argon, A.S., Shi, L.T.: Development of visco-plastic deformation in metallic glasses. Acta Metall. 31(4), 499 (1983).Google Scholar
17.Falk, M.L., Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57(6), 7192 (1998).CrossRefGoogle Scholar
18.Falk, M.L.: Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids. Phys. Rev. B 60(10), 7062 (1999).CrossRefGoogle Scholar
19.Schuh, C.A., Lund, A.C., Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52(20), 5879 (2004).CrossRefGoogle Scholar
20.Lu, J., Ravichandran, G., Johnson, W.L.: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51(12), 3429 (2003).CrossRefGoogle Scholar
21.Demetriou, M.D., Johnson, W.L.: Modeling the transient flow of undercooled glass-forming liquids. J. Appl. Phys. 95(5), 2857 (2004).CrossRefGoogle Scholar
22.Flores, K.M., Dauskardt, R.H.: Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater. 49, 2527 (2001).CrossRefGoogle Scholar
23.Simpson, A.W., Hodkinson, P.H.: Bubble raft model for an amorphous alloy. Nature 237, 320 (1972).CrossRefGoogle Scholar
24.Argon, A.S., Kuo, H.Y.: Plastic-flow in a disordered bubble raft (an analog of a metallic glass). Mater. Sci. Eng. 39, 101 (1979).CrossRefGoogle Scholar
25.Maeda, K., Takeuchi, S.: Simple computer modeling of metallic amorphous structure. J. Phys. F 8(12), L283 (1978).CrossRefGoogle Scholar
26.Zehnder, A.T., Rosakis, A.J.: On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel. J. Mech. Phys. Solids 39(3), 382 (1991).CrossRefGoogle Scholar
27.Kallivayalil, J.A., Zehnder, A.T.: Measurement of temperature field induced by dynamic crack growth in β-C titanium. Int. J. Frac. 66, 99 (1994).CrossRefGoogle Scholar
28.Weichert, R., Schonert, K.: Heat generation at the tip of a moving crack. J. Mech. Phys. Solids 26, 151 (1978).CrossRefGoogle Scholar
29.Glade, S.C., Busch, R., Lee, D.S., Johnson, W.L., Wunderlich, R.K., Fecht, H.J.: Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. J. Appl. Phys. 87(10), 7272 (2000).CrossRefGoogle Scholar
30.Hirth, J.P., Lothe, J.: Theory of Dislocations (McGraw-Hill, New York, 1967).Google Scholar
31.Mastrojannis, E.N., Mura, T., Keer, L.M.: Stress-field of a planar elliptical dislocation loop. Philos. Mag. 35(4), 1137 (1977).CrossRefGoogle Scholar
32.Gilbert, C.J., Ager, J.W., Schroeder, V., Ritchie, R.O., Lloyd, J.P., Graham, J.R.: Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 74(25), 3809 (1999).CrossRefGoogle Scholar
33.Lu, Z.P., Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50(13), 3501 (2002).CrossRefGoogle Scholar
34.Kato, H., Inoue, A., Chen, H.S.: Heating and structural disordering effects of the nonlinear viscous flow in a Zr55Al10Ni5Cu30 bulk metallic glass. Appl. Phys. Lett. 83(26), 5401 (2003).CrossRefGoogle Scholar
35.Lin, X.H., Johnson, W.L., Rhim, W.K.: Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. Mater. Trans. JIM 38(5), 473 (1997).CrossRefGoogle Scholar
36.Lu, Z.P., Liu, C.T., Thompson, J.R., Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92(24), 245503 (2004).CrossRefGoogle ScholarPubMed
37.Busch, R., Liu, W., Johnson, W.L.: Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J. Appl. Phys. 83(8), 4134 (1998).CrossRefGoogle Scholar
38.Lu, Z.P., Li, Y., Liu, T.: Glass-forming tendency of bulk La-Al-Ni-Cu-(Co) metallic glass-forming liquids. J. Appl. Phys. 93(2), 1 (2003).CrossRefGoogle Scholar
39.Lu, I.R., Wilde, G., Gorler, G.P., Willnecker, R.: Thermodynamic properties of Pd-based glass-forming alloys. J. Non-Cryst. Solids 250–252, 577 (1999).CrossRefGoogle Scholar
40.Wilde, G., Lu, I.R., Willnecker, R.: Fragility, thermodynamic properties, and thermal stability of Pd-rich glass forming liquids. Mater. Sci. Eng. A 375–377, 417 (2004).CrossRefGoogle Scholar
41.Busch, R., Kim, Y.J., Johnson, W.L., Rulison, A.J., Rhim, W.K., Isheim, D.: Hemispherical total emissivity and specific heat capacity of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts. Appl. Phys. Lett. 66(23), 3111 (1995).CrossRefGoogle Scholar
42.Okai, D., Fukami, T., Yamasaki, T., Zhang, T., Inoue, A.: Temperature dependence of heat capacity and electrical resistivity of Zr-based bulk glassy alloys. Mater. Sci. Eng. A 375–377, 364 (2004).CrossRefGoogle Scholar
43.Lu, Z.P. and Liu, C.T.: (unpublished data).Google Scholar
44.Schuh, C.A., Nieh, T.G.: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19(1), 46 (2004).CrossRefGoogle Scholar
45.Li, Y.: (unpublished data).Google Scholar
46.Johnson, W. L.: Bulk metallic glasses: An emerging engineering material. JOM 40(2002).Google Scholar
47.Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).CrossRefGoogle Scholar
48.Calin, M., Eckert, J., Schultz, L.: Improved mechanical behavior of Cu-Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 48, 653 (2003).CrossRefGoogle Scholar
49.Kato, H., Inoue, A.: Synthesis and mechanical properties of bulk amorphous Zr-Al-Ni-Cu alloys containing ZrC particles. Mater. Trans. JIM 38, 793 (1997).Google Scholar
50.Wang, J.G., Choi, B.W., Nieh, T.G., Liu, C.T.: Crystallization and nanoindentation behavior of a bulk Zr-Al-Ti-Cu-Ni amorphous alloy. J. Mater. Res. 15, 798 (2000).CrossRefGoogle Scholar