Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T10:44:21.634Z Has data issue: false hasContentIssue false

Local structure of the Zr–Al metallic glasses studied by proposed n-body potential through molecular dynamics simulation

Published online by Cambridge University Press:  31 January 2011

B.X. Liu*
Affiliation:
Advanced Materials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
*
a)Address all correspondence to this author. e-mail: dmslbx@mail.tsinghua.edu.cn
Get access

Abstract

An n-body potential is first constructed for the Zr–Al system and proven to be realistic by reproducing a number of important properties of the system. Applying the constructed potential, molecular dynamics simulations, chemical short-range order (CSRO) calculation, and Honeycutt and Anderson (HA) pair analysis are carried out to study the Zr–Al metallic glasses. It is found that for the binary Zr–Al system, metallic glasses are energetically favored to be formed within composition range of 35–75 at.% Al. The calculation shows that the CSRO parameter is negative and could be up to −0.17, remarkably indicating that there exists a chemical short-range order in the Zr–Al metallic glasses. The HA pair analysis also reveals that there are diverse short-range packing units in the Zr–Al metallic glasses, in which icosahedra and icosahedra/face-centered cubic (fcc)-defect structures are predominant.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Peker, A., Johnson, W.L.A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993)CrossRefGoogle Scholar
2.Jiang, Q.K., Wang, X.D., Nie, X.P., Zhang, G.Q., Ma, H., Fecht, H.J., Bendnarcik, J., Franz, H., Liu, Y.G., Cao, Q.P., Jiang, J.Z.Zr–(Cu,Ag)–Al bulk metallic glasses. Acta Mater 56, 1785 (2008)CrossRefGoogle Scholar
3.Inoue, A., Kawase, D., Tsai, A.P., Zhang, T., Masumoto, T.Stability and transformation to crystalline phases of amorphous ZrAlCu alloys with significant supercooled liquid region. Mater. Sci. Eng., A 178, 255 (1994)CrossRefGoogle Scholar
4.Lee, S., Choi, C., Kim, Y.Effect of Zr concentration on the microstructure of Al and the magnetoresistance properties of the magnetic tunnel junction with a Zr-alloyed Al-oxide barrier. Appl. Phys. Lett. 83, 317 (2003)CrossRefGoogle Scholar
5.Ma, E., Brunner, F., Atzmon, M.Stability and thermodynamic properties of supersaturated solid solution and amorphous phase formed by ball milling in the zirconium-aluminum system. J. Phase Equilib. 14, 137 (1993)CrossRefGoogle Scholar
6.Fecht, H.J., Han, G., Fu, Z., Johnson, W.L.Metastable phase formation in the zirconium-aluminum system induced by mechanical alloying. J. Appl. Phys. 67, 1744 (1990)CrossRefGoogle Scholar
7.Ho, J., Lin, K.The metastable Al–Zr alloy thin films prepared by alternate sputtering deposition. J. Appl. Phys. 75, 2434 (1994)CrossRefGoogle Scholar
8.Boer, F.R.D., Boom, R., Matterns, W.C.M., Miedema, A.R., Niessen, A.K.Cohesion in Metals: Transition Metal Alloys (North HollandAmsterdam, The Netherlands 1998)Google Scholar
9.Finney, J.L., Wallace, J.Interstice correlation functions; A new, sensitive characterisation of non-crystalline packed structures. J. Non-Cryst. Solids 43, 165 (1981)CrossRefGoogle Scholar
10.Fukunaga, T., Suzuki, K.Radial distribution functions of Pd-Si alloy glasses by pulsed neutron total scattering measurements and geometrical structure relaxation simulations. Sci. Rep. RITU 29-A, 153 (1981)Google Scholar
11.Kai, K., Ikeda, S., Fukunaga, T., Watanabe, N., Suzuki, K.Chemical short-range structure of NixTi1−x (x = 0.26–0.40) alloy glasses. Physica B+C 120, 352 (1983)Google Scholar
12.Fukunaga, T., Watanabe, N., Suzuki, K.Experimental determination of partial structures in Ni40Ti60 glass. J. Non-Cryst. Solids 61–62, 343 (1984)CrossRefGoogle Scholar
13.Hui, X.D., Yao, K.F., Kou, H.C., Chen, G.L.Chemical short-range order domain in bulk amorphous alloy and the prediction of glass forming ability. Sci. China Ser. E: Technol. Sci. 46, 581 (2003)CrossRefGoogle Scholar
14.Li, J.H., Dai, X.D., Wang, T.L., Liu, B.X.A binomial truncation function proposed for the second-moment approximation of tight-binding potential and application in the ternary Ni–Hf–Ti system. J. Phys. Condens. Matter 19, 086228 (2007).CrossRefGoogle Scholar
15.Cleri, F., Rosato, V.Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22 (1993)CrossRefGoogle ScholarPubMed
16.Cai, J., Ye, Y.Y.Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B 54, 8398 (1996)CrossRefGoogle ScholarPubMed
17.Kresse, G., Furthmuller, J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
18.Warren, B.E., Averbach, B.L., Roberts, B.W.Atomic size effect in the x-ray scattering by alloys. J. Appl. Phys. 22, 1493 (1951)CrossRefGoogle Scholar
19.Honeycutt, J.D., Andersen, H.C.Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950 (1987)CrossRefGoogle Scholar
20.Segall, M.D., Lindan, P.L.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002)CrossRefGoogle Scholar
21.Bailey, N.P., Schiotz, J., Jacobsen, K.W.Simulation of Cu–Mg metallic glasses: Thermodynamics and structure. Phys. Rev. B 69, 144205 (2004)CrossRefGoogle Scholar
22.Parrinello, M., Rahman, A.Polymorphic transition in simple crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981)CrossRefGoogle Scholar
23.Ciccotti, G., Hoover, W.G.Molecular Dynamics Simulation of Statistical–Mechanical Systems (North-Holland, The Netherlands 1986)Google Scholar
24.Allen, M.P., Tildesley, D.J.Computer Simulation of Liquids (Oxford, Clarendon, UK 1981)Google Scholar
25.Gazzillo, D., Pastore, G., Enzo, S.Chemical short-range order in amorphous Ni–Ti alloys: An integral equation approach with a non-additive hard-sphere model. J. Phys. Condens. Matter 1, 3469 (1989)CrossRefGoogle Scholar
26.Lo, Y.C., Huang, J.C., Ju, S.P., Du, X.H.Atomic structure evolution of Zr–Ni during severe deformation by HA pair analysis. Phys. Rev. B 76, 024103 (2007)CrossRefGoogle Scholar
27.Kittel, C.Introduction to Solid State Physics (John Wiley & Sons, New York 1996)Google Scholar
28.Brandes, E.A., Brook, G.B.Smithells Metals Reference Book 7th ed. (Butterworth-Heinemann, Oxford, UK 1992)Google Scholar
29.Pearson, W.B.A Handbook of Lattice Spaces and Structures of Metals and Alloys (Pergamon, London, UK 1958)Google Scholar
30.Boer, F.R.D., Boom, R., Matterns, W.C.M., Miedema, A.R., Niessen, A.K.Cohesion in Metals: Transition Metal Alloys (North HollandAmsterdam, The Netherlands 1998)Google Scholar
31.Kostromin, B.F., Plishkin, Y.M., Podchinyonov, I.E., Trakhtenberg, I.S.Detection of diffusion parameter connection with point microscopic characteristics by the computer-simulation method. Fiz. Met. Metalloved. 55, 450 (1983)Google Scholar
32.Meng, W.J., Faber, J.J., Okamoto, P.R., Rehn, L.E., Kestel, B.J.Neutron diffraction and transmission-electron-microscopy study of hydrogen-induced phase transformations in Zr3Al. J. Appl. Phys. 67, 1312 (1990)CrossRefGoogle Scholar
33.Hansen, R.C., Raman, A.Alloy chemistry of sigma (beta-U)-related phases. III. Sigma phases with non-transition elements. Z. Metallkd. 53, 548 (1962)Google Scholar
34.Nandedkar, R.V., Delavignette, P.On the formation of a new superstructure in the Zr–Al system. Phys. Status Solidi A 73, 157 (1982)CrossRefGoogle Scholar
35.Ma, Y., Roemming, C., Lebech, B., Gjonnes, J., Tafto, J.Structure refinement of Al3Zr using single-crystal x-ray diffraction, powder neutron diffraction and CBED. Acta Crystallogr., Sect. B 48, 11 (1992)CrossRefGoogle Scholar
36.Gudzenko, V.N., Polesya, A.F.Structure of splat cooled from liquid-state zirconium–aluminum alloys. Fiz. Met. Metalloved. 39, 1313 (1975)Google Scholar
37.Yang, J.J., Yang, Y., Wu, K., Chang, Y.A.Amorphous alloy thin films as precursor metals of oxide tunnel barrier used in magnetic tunnel junctions. J. Appl. Phys. 98, 074508 (2005)CrossRefGoogle Scholar
38.Yoshioka, H., Habazaki, H., Kawahima, A., Asami, K., Hashimoto, K.Anodic polarization behavior of sputter-deposited Al–Zr alloys in a neutral chloride-containing buffer solution. Electrochim. Acta 36, 1227 (1991)CrossRefGoogle Scholar
39.Knoll, W., Steeb, S.Partial interference and pair correlation functions, thermoelectric power, and electrical resistivity of molten Cu–Sb alloys. Phys. Chem. Liq. 4, 27 (1973)CrossRefGoogle Scholar
40.Mayou, D., Pasturel, A.On the microscopic origin of chemical short-range order in transition metal glasses. J. Phys. Condens. Matter 1, 9685 (1989)CrossRefGoogle Scholar