Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T10:49:08.189Z Has data issue: false hasContentIssue false

Local characterization of austenite and ferrite phases in duplex stainless steel using MFM and nanoindentation

Published online by Cambridge University Press:  17 April 2012

Karim Raafat Gadelrab*
Affiliation:
Laboratory for Energy and Nano Science (LENS), Masdar Institute of Science and Technology, 54224 Abu Dhabi, United Arab Emirates
Guang Li
Affiliation:
Laboratory for Energy and Nano Science (LENS), Masdar Institute of Science and Technology, 54224 Abu Dhabi, United Arab Emirates
Matteo Chiesa
Affiliation:
Laboratory for Energy and Nano Science (LENS), Masdar Institute of Science and Technology, 54224 Abu Dhabi, United Arab Emirates
Tewfik Souier
Affiliation:
Laboratory for Energy and Nano Science (LENS), Masdar Institute of Science and Technology, 54224 Abu Dhabi, United Arab Emirates
*
a)Address all correspondence to this author. e-mail: kgadelrab@masdar.ac.ae
Get access

Abstract

The local mechanical properties of ferritic and austenitic domains in a duplex stainless steel are locally studied by nanoindentation. The elastic and plastic properties of the two phases are determined. Without any specific surface treatment (chemical or electrochemical), the austenitic and ferritic domains present in the duplex stainless steel are distinguished using magnetic force microscopy. The magnetic scans allow nanoindentation results to be assigned to the respective phase, yielding the local mechanical properties of the duplex steel. The magnetic scans also show a sharp transition between the phases that is maintained even inside indentations. The ferrite phase is found to supersede austenite in the elastic modulus, hardness, and strain-hardening exponent, while both phases possess similar yield strength. Interface properties are a weighted average of the phase properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jorge, A.M., Reis, G.S., and Balancin, O.: Influence of the microstructure on the plastic behaviour of duplex stainless steels. Mater. Sci. Eng., A 528(6), 22592264 (2011).CrossRefGoogle Scholar
2.Nilsson, J.O.: Super duplex stainless steels. Mater. Sci. Technol. 8(8), 685700 (1992).CrossRefGoogle Scholar
3.Dupoiron, F. and Audouard, J.: Duplex stainless steels: A high mechanical properties stainless steels family. Scand. J. Metall. 25(3), 95102 (1996).Google Scholar
4.Cabrera, J.M., Mateo, A., Llanes, L., Prado, J.M., and Anglada, M.: Hot deformation of duplex stainless steels. J. Mater. Process. Technol. 143144, 321325 (2003).CrossRefGoogle Scholar
5.Olsson, J. and Snis, M.: Duplex—A new generation of stainless steels for desalination plants. Desalination 205(1–3), 104113 (2007).CrossRefGoogle Scholar
6.Sahraoui, T., Hadji, M., and Yahi, M.: Design and deformation behavior of high strength Fe–Mn–Al–Cr–C duplex steel. Mater. Sci. Eng., A 523(1), 271276 (2009).CrossRefGoogle Scholar
7.Johansson, J., Oden, M., and Zeng, X.H.: Evolution of the residual stress state in a duplex stainless steel during loading. Acta Mater. 47(9), 26692684 (1999).CrossRefGoogle Scholar
8.Siegmund, T., Werner, E., and Fischer, F.: On the thermomechanical deformation behavior of duplex-type materials. J. Mech. Phys. Solids 43(4), 495501 (1995).Google Scholar
9.Horvath, W., Tabernig, B., Werner, E., and Uggowitzer, P.: Microstructures and yield strength of nitrogen alloyed super duplex steels. Acta Mater. 45(4), 16451654 (1997).Google Scholar
10.Baltazar Hernandez, V., Panda, S.K., Kuntz, M.L., and Zhou, Y.: Nanoindentation and microstructure analysis of resistance spot welded dual phase steel. Mater. Lett. 64(2), 207210 (2010).CrossRefGoogle Scholar
11.Choi, B.W., Seo, D.H., and Jang, J.: A nanoindentation study on the micromechanical characteristics of API X100 pipeline steel. Met. Mater. Int. 15(3), 373378 (2009).CrossRefGoogle Scholar
12.Ahn, T.H., Um, K.-K., Choi, J.-K., Kim, D.H., Oh, K.H., Kim, M., and Han, H.N.: Small-scale mechanical property characterization of ferrite formed during deformation of super-cooled austenite by nanoindentation. Mater. Sci. Eng., A 523(1), 173177 (2009).CrossRefGoogle Scholar
13.Campos, M., Bautista, A., Cáceres, D., Abenojar, J., and Torralba, J.M.: Study of the interfaces between austenite and ferrite grains in P/M duplex stainless steels. J. Eur. Ceram. Soc. 23(15), 28132819 (2003).CrossRefGoogle Scholar
14.Femenia, M., Canalias, C., Pan, J., and Leygraf, C.: Scanning Kelvin probe force microscopy and magnetic force microscopy for characterization of duplex stainless steels. J. Electrochem. Soc. 150, B274 (2003).Google Scholar
15.Wang, X.F., Yang, X.P., Guo, Z.D., Zhou, Y.C., and Song, H.W.: Nanoindentation characterization of mechanical properties of ferrite and austenite in duplex stainless steel. Adv. Mater. Res. 26, 11651170 (2007).CrossRefGoogle Scholar
16.Dias, A. and Andrade, M.S.: Atomic force and magnetic force microscopies applied to duplex stainless steels. Appl. Surf. Sci. 161(1–2), 109114 (2000).CrossRefGoogle Scholar
17.Cheng, Y.T. and Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44(4–5), 91149 (2004).CrossRefGoogle Scholar
18.Oliver, W. and Pharr, G.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 15641583 (1992).CrossRefGoogle Scholar
19.Oliver, W. and Pharr, G.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(3), 320 (2004).CrossRefGoogle Scholar
20.Moverare, J.J. and Odén, M.: Deformation behaviour of a prestrained duplex stainless steel. Mater. Sci. Eng., A 337(1), 2538 (2002).CrossRefGoogle Scholar
21.Moverare, J.J. and Odén, M.: Influence of elastic and plastic anisotropy on the flow behavior in a duplex stainless steel. Metall. Mater. Trans. A 33(1), 5771 (2002).CrossRefGoogle Scholar
22.Fischer, F.D., Rammerstorfer, F.G., and Bauer, F.: Fatigue and fracture of high-alloyed steel specimens subjected to purely thermal cycling. Metall. Mater. Trans. A 21(3), 935948 (1990).CrossRefGoogle Scholar
23.Siegmund, T., Werner, E., and Fischer, F.: The irreversible deformation of a duplex stainless steel under thermal cycling. Mater. Sci. Eng., A 169(1–2), 125134 (1993).CrossRefGoogle Scholar
24.Inal, K., Gergaud, P., Francois, M., and Lebrun, J.L.: X-ray diffraction methodologies of macro and pseudo-macro stress analysis in a textured duplex stainless steel. Scand. J. Metall. 28(4), 139150 (1999).Google Scholar
25.Solomon, H.D. and Devine, T.M.: Influence of microstructure on the mechanical properties and localized corrosion of a duplex stainless steel. ASTM Special Technical Publication 672, 430461 (1979).Google Scholar
26.Fréchard, S., Martin, F., Clément, C., and Cousty, J.: AFM and EBSD combined studies of plastic deformation in a duplex stainless steel. Mater. Sci. Eng., A 418(1), 312319 (2006).CrossRefGoogle Scholar
27.Serre, I., Salazar, D., and Vogt, J.B.: Atomic force microscopy investigation of surface relief in individual phases of deformed duplex stainless steel. Mater. Sci. Eng., A 492(1–2), 428433 (2008).Google Scholar
28.Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., and Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49(19), 38993918 (2001).CrossRefGoogle Scholar
29.Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., and Shen, Y.: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55(12), 40154039 (2007).CrossRefGoogle Scholar
30.Tabor, D.: A simple theory of static and dynamic hardness. Proc. R. Soc. London, Ser. A 192(1029), 247 (1948).Google Scholar