Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:41:52.488Z Has data issue: false hasContentIssue false

Local and Electronic Structure of Siloxene

Published online by Cambridge University Press:  31 January 2011

Ernst Z. Kurmaev
Affiliation:
Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620219 Yekaterinburg GSP-170, Russia
Sergei N. Shamin
Affiliation:
Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620219 Yekaterinburg GSP-170, Russia
David L. Ederer
Affiliation:
Department of Physics, Tulane University, New Orleans, Louisiana 70118
Ursula Dettlaff-Weglikowska
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Jörg Weber
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Get access

Abstract

Silicon L2,3 x-ray emission spectra (XES) of siloxene powder samples prepared according to Wöohler and Kautsky (Wöhler and Kautsky siloxene) are presented. The results are compared with the Si L2,3 spectra of the reference compounds a-Si, c-Si, SiO2, and SiOx. A close similarity of the electronic structure of Wöhler siloxene to that of a-SiO0.43: H and of Kautsky siloxene to that of a-SiO0.87: H is found. We determine the number of oxygen atoms per Si atom at ~0.5 in Wöhler siloxene and ~0.8 in Kautsky siloxene. The relative concentrations are in good agreement with the results of infrared absorption measurements on the same samples.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Miller, D.A.B, Nature (London) 384, 307 (1996).CrossRefGoogle Scholar
2.Brandt, M.S., Rosenbauer, M., and Stutzman, M., in Silicon-Based Optoelectronic Materials, edited by Tischler, M. A., Collins, R. T., Thewalt, M.L.W, and Abstreiter, G. (Mater. Res. Soc. Symp. Proc. 298, Pittsburgh, PA, 1993), p. 301.Google Scholar
3.Rosenbauer, M., Höpner, A., Dettlaff-Weglikowska, U., and Stutzman, M., Phys. Status Solidi (b) 190, 107 (1995).Google Scholar
4.Brandt, M.S., Fuchs, H. D., Stutzman, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).CrossRefGoogle Scholar
5.Stutzman, M., Weber, J., Brandt, M. S., Fuchs, H. D., Rosenbauer, M., Deak, P., Höpner, A., and Breitschwerdt, A., Adv. Solid State Phys. 32, 179 (1992).CrossRefGoogle Scholar
6.Wöhler, F., Lieb. Ann. 127, 275 (1863).CrossRefGoogle Scholar
7.Kautsky, H. and Zocher, H., Z. Phys. 9, 267 (1929).Google Scholar
8.Weiss, A., Beil, G., and Meyer, H., Z. Naturforsch. B 34, 25 (1979).CrossRefGoogle Scholar
9.Kurmaev, E.Z., Fedorenko, V.V., Shamin, S. N., Postnikov, A. V., Wiech, G., and Kim, Y., Physica Scripta T41, 288 (1992).Google Scholar
10.Wiech, G. and Kurmaev, E. Z., J. Phys. C 18, 4393 (1985).Google Scholar
11.Kurmaev, E.Z. and Wiech, G., J. Non-Cryst. Solids 70, 187 (1985).CrossRefGoogle Scholar
12.Dahn, J. R., Way, B.M., Fuller, E. W., Weydanz, W. J., Tse, J.S., Klug, D.D., Van Buuren, T., and Tiedje, T., J. Appl. Phys. 75, 1946 (1994).CrossRefGoogle Scholar
13.Wiech, G., Feldhütter, H-O., and Simunek, A., Phys. Rev. B 47, 6981 (1993).Google Scholar
14.Hönle, W., Dettlaff-Weglikowska, U., Finkbeiner, S., Molassioti-Dohms, A., and Weber, J., in Tailor-made Silicon-Oxygen Compounds, From Molecules to Materials, edited by Corriu, R. and Jutzi, P. (Vieweg Verlag, Wiesbaden, 1996), pp. S.99116.Google Scholar