Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T21:58:37.908Z Has data issue: false hasContentIssue false

Lead Zirconate Titanate Thick Film Prepared by Electrophoretic Deposition from Oxide Mixture

Published online by Cambridge University Press:  31 January 2011

R. F. Zhang
Affiliation:
School of Materials Engineering, Nanyang Technological University, Singapore 639798
J. Ma
Affiliation:
School of Materials Engineering, Nanyang Technological University, Singapore 639798
L. B. Kong
Affiliation:
School of Materials Engineering, Nanyang Technological University, Singapore 639798
Get access

Extract

Lead zirconate titanate (PbZr0.52Ti0.48O3; PZT) thick film with a thickness of 70 µm was prepared by the electrophoretic deposition method from a raw oxide mixture of PbO, ZrO2, and TiO2. X-ray diffraction and scanning electron microscopy were used to characterize the sintered PZT thick film. Single phase PZT was observed in the films sintered at 900 °C and above. The film sintered at 1000 °C for 30 min exhibited a dielectric constant of 1050 with a dielectric loss of about 0.05 measured at 1 kHz, a maximum polarization of 29 µC/cm2, a remnant polarization of 19 µC/cm2, and a coercive field of 21 kV/cm. This simple process to form PZT thick films may also be applied to the preparation of other multicomponent ceramics and ceramic films.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Haertling, G.H., J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
2.Chang, C.C. and Tang, C.S., J. Appl. Phys. 87, 3931 (2000).Google Scholar
3.Verardi, P., Dinescu, M., Cracium, F., and Perrone, A., Appl. Surf. Sci. 127–129, 457 (1998).Google Scholar
4.Tsu, I.F., Basi, G.R., Foster, C.M., Merkle, K.L., and Liu, K.C., J. Mater. Res. 13, 1614 (1998).Google Scholar
5.Tu, Y.L. and Milne, S.J., J. Mater. Sci. 30, 2507 (1995).Google Scholar
6.Tu, Y.L., Calzada, M.L., Phillips, N.J., and Milne, S.J., J. Am. Ceram. Soc. 79, 441 (1996).CrossRefGoogle Scholar
7.Barrow, D.A., Petroff, T.E., Tandon, R.P., and Sayer, M., J. Appl. Phys. 81, 876 (1997).Google Scholar
8.Chen, H.D., Udayakumar, K.R., Gaskey, C.J., Cross, L.E., Bernstein, J.J., and Niles, L.C., J. Am. Ceram. Soc. 79, 2189 (1996).CrossRefGoogle Scholar
9.Morten, B., Cicco, G. De, and Prudenziati, M., Sens. Actuators A 31, 153 (1992).CrossRefGoogle Scholar
10.Moilanen, H., Leppa¨vuori, S., and Unsima¨ki, A., Sens. Actuators A 37–38, 106 (1993).CrossRefGoogle Scholar
11.Ferrari, W., Marioli, D., and Taroni, A., Meas. Sci. Technol. 8, 42 (1997).Google Scholar
12.Chen, H.D., Udayakumar, K.R., Cross, L.E., Bernstein, J.J., and Niles, L.C., J. Appl. Phys. 77, 3349 (1995).CrossRefGoogle Scholar
13.Powers, R.W., Am. Ceram. Soc. Bull. 65, 1270 (1986).Google Scholar
14.Sarkar, P., Huang, X., and Nicholson, P.S., J. Am. Ceram. Soc. 75, 2907 (1992).CrossRefGoogle Scholar
15.Zhang, Z., Huang, Y., and Jiang, Z., J. Am. Ceram. Soc. 77, 1964 (1994).Google Scholar
16.Sakar, P., Mathur, S., Nicholson, P.S., and Stager, C.V., J. Appl. Phys. 69, 1775 (1991).CrossRefGoogle Scholar
17.Hein, M., Mu¨ller, G., Piel, H., Ponto, L., Becks, M., Klein, Ul, and Peiniger, M., J. Appl. Phys. 66, 5940 (1989).CrossRefGoogle Scholar
18.Chu, C.T. and Dunn, B., Appl. Phys. Lett. 55, 492 (1989).Google Scholar
19.Tassel, J. Van and Randall, C.A., J. Europ. Ceram. Soc. 19, 955 (1999).Google Scholar
20.Sugiyama, S., Takagi, A., and Tsuzuki, K., Jpn. J. Appl. Phys. 30, 2170 (1991).CrossRefGoogle Scholar
21.Sarkar, P. and Nicholson, P.S., J. Am. Ceram. Soc. 79, 1987 (1996).CrossRefGoogle Scholar