Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T18:48:48.378Z Has data issue: false hasContentIssue false

Lead titanate nano- and microtubes

Published online by Cambridge University Press:  01 March 2006

Lili Zhao*
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle/S, Germany
Martin Steinhart
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle/S, Germany
Jian Yu
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
Ulrich Gösele
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle/S, Germany
*
a) Address all correspondence to this author. e-mail: lzhao@mpi-halle.de
Get access

Abstract

Lead titanate (PbTiO3) nano- and microtubes were fabricated by wetting ordered porous alumina and macroporous silicon with precursor oligomers coupled with templated thermolysis. The diameters of the PbTiO3 tubes range from a few tens of nanometers up to one micron. The proper selection of the template allowed for a precise adjustment of their size over two orders of magnitude. Electron microscopy and x-ray diffraction revealed that the tube walls were polycrystalline. The generic approach presented here can be adapted for the fabrication of tubes and rods from a multitude of functional inorganic oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sumi, T., Judai, Y., Hirano, K., Ito, T., Mikawa, T., Azuma, M., Hayashi, S., Uemoto, Y., Arita, K., Nasu, T., Nagano, Y., Inoue, A., Matsuda, A., Fuji, E., Shimada, Y., Otsuki, T.: Ferroelectric nonvolatile memory technology and its applications. Jpn. J. Appl. Phys. 35, 1516 (1996).CrossRefGoogle Scholar
2.Chu, M.W., Szafraniak, I., Scholz, R., Hesse, D., Alexe, M., Gösele, U.: Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater. 3, 87 (2004).CrossRefGoogle ScholarPubMed
3.Scott, J.F.: Nano-phase ferroelectric arrays for Gbit devices. Ferroelectrics 260, 649 (2001).CrossRefGoogle Scholar
4.Martin, C.R.: Sol-gel template synthesis of semiconductor nanostructures. Science 266, 1961 (1994).CrossRefGoogle Scholar
5.Martin, C.R.: Template synthesis of polymeric and metal microtubules. Adv. Mater. 3, 457 (1991).CrossRefGoogle Scholar
6.Steinhart, M., Wendorff, J.H., Greiner, A., Wehrspohn, R.B., Nielsch, K., Schilling, J., Choi, J., Gösele, U.: Polymer nanotubes by wetting of ordered porous templates. Science 296, 1997 (2002).CrossRefGoogle ScholarPubMed
7.Steinhart, M., Wehrspohn, R.B., Gösele, U., Wendorff, J.H.: Nanotubes by template wetting: A modular assembly system. Angew. Chem. Int. Ed. Engl. 43, 1334 (2004).CrossRefGoogle ScholarPubMed
8.Tian, M., Wang, J., Kurtz, J., Mallouk, T.E., Chan, M.H.W.: Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919 (2003).CrossRefGoogle Scholar
9.Han, W.Q., Fan, S.S., Li, Q.Q., Hu, Y.D.: Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287 (1997).CrossRefGoogle Scholar
10.Limmer, S.J., Seraji, S., Forbess, M.J., Wu, Y., Chou, T.P., Nguyen, C., Cao, G.Z.: Electrophoretic growth of lead zirconate titanate nanorods. Adv. Mater. 13, 1269 (2001).3.0.CO;2-S>CrossRefGoogle Scholar
11.Zhao, L., Steinhart, M., Yosef, M., Lee, S.K., Geppert, T., Pippel, E., Scholz, R., Gösele, U., Schlecht, S.: Lithium niobate microtubes within ordered macroporous silicon by templated thermolysis of a single-source precursor. Chem. Mater. 17, 3 (2005).CrossRefGoogle Scholar
12.Zhao, L., Steinhart, M., Yosef, M., Lee, S.K., Schlecht, S.: Large-scale template-assisted growth of LiNbO3 one-dimensional nanostructures for nano-sensors. Sens. Actuators B 101, 86 (2005).CrossRefGoogle Scholar
13.Morrison, F.D., Ramsay, L., Scott, J.F.: High aspect ratio piezoelectric strontium bismuth–tantalate nanotubes. J. Phys.: Condens. Matter. 15, L527 (2003).Google Scholar
14.Chang, K.S., Hernandez, B.A., Fisher, E.R., Dorhout, P.K.: Sol-gel template synthesis and characterization of PT, PZ and PZT Nanotubes. J. Kor. Chem. Soc. 46, 242 (2002).Google Scholar
15.Hernandez, B.A., Chang, K.S., Fisher, E.R., Dorhout, P.K.: Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem. Mater. 14, 480 (2002).CrossRefGoogle Scholar
16.Luo, Y., Szafraniak, I., Zakharov, N.D., Nagarajan, V., Steinhart, M., Wehrspohn, R.B., Wendorff, J.H., Ramesh, R., Alexe, M.: Ferroelectric switching of nanotubes composed of lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440 (2003).CrossRefGoogle Scholar
17.Luo, Y., Szafraniak, I., Nagarajan, V., Wehrspohn, R.B., Steinhart, M., Wendorff, J.H., Zakharov, N.D., Ramesh, R., Alexe, M.: Ferroelectric lead zirconate titanate and barium titanate nanotubes. Integr. Ferroelectrics 59, 1513 (2003).CrossRefGoogle Scholar
18.Urban, J.J., Yun, W.S., Gu, Q., Park, H.: Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc. 124, 1186 (2002).CrossRefGoogle ScholarPubMed
19.Mao, Y.B., Banerjee, S., Wong, S.S.: Large-scale synthesis of single-crystalline perovskite nanostructures. J. Am. Chem. Soc. 125, 15718 (2003).CrossRefGoogle ScholarPubMed
20.Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).CrossRefGoogle ScholarPubMed
21.Masuda, H., Yada, K., Osaka, A.: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys., Part 2-Lett. 37, L1340 (1998).CrossRefGoogle Scholar
22.Masuda, H., Hasegawa, F., Ono, S.: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127 (1997).CrossRefGoogle Scholar
23.Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R.B., Gösele, U.: Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2, 677 (2002).CrossRefGoogle Scholar
24.Lehmann, V.: The physics of macropore formation in low-doped n-type silicon. J. Electrochem. Soc. 140, 2836 (1993).CrossRefGoogle Scholar
25.Birner, A., Grüning, U., Ottow, S., Schneider, A., Müller, F., Lehmann, V., Föll, H., Gösele, U.: Macroporous silicon: A two-dimensional photonic bandgap material suitable for the near-infrared spectral range. Phys. Status Solidi A 165, 111 (1998).3.0.CO;2-T>CrossRefGoogle Scholar
26.Fox, H.W., Hare, E.F., Zisman, W.A.: Wetting properties of organic liquids on high-energy surfaces. J. Phys. Chem. 59, 1097 (1955).CrossRefGoogle Scholar
27.Bune, A.V., Fridkin, V.M., Ducharme, S., Blinov, L.M., Palto, S.P., Sorokin, A.V., Yudin, S.G., Zlatkin, A.: Two-dimensional ferroelectric films. Nature 391, 74 (1998).CrossRefGoogle Scholar
28.Lee, H.N., Hesse, D., Zakharov, N., Gösele, U.: Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrates. Science 296, 2006 (2002).CrossRefGoogle ScholarPubMed
29.Shaw, T.M., Trolier-McKinstry, S., McIntyre, P.C.: The properties of ferroelectric films at small dimensions. Ann. Rev. Mater. Sci. 30, 263 (2000).CrossRefGoogle Scholar
30. Joint Committee on Powder Diffraction Standards.Google Scholar
31.Guinier, A.: X-Ray Diffraction, 2nd ed. (Dover Publications, Mineola, NY, 1994).Google Scholar